半小时学会 PyTorch Hook
SIGAI特约作者
尹相楠
里昂中央理工 在读博士
提到 hook,我首先想起的是动画《小飞侠》里滑稽的 captain hook,满满童年的回忆促使我 P 了张题图:虎克船长勾着 PyTorch 的 logo。同时想起的还有大名鼎鼎的胡克定律:Hooke's law(虽然不是一个 hook),当年上物理实验课,看着弹簧测力计下面的钩子,联想到胡克被牛顿爵士打压的悲惨一生,不由发出既生胡何生牛的唏嘘……然而本文将介绍的是 PyTorch 中的 hook。
首先贴一段维基百科中对钩子的定义:
钩子编程(hooking),也称作“挂钩”,是计算机程序设计术语,指通过拦截软件模块间的函数调用、消息传递、事件传递来修改或扩展操作系统、应用程序或其他软件组件的行为的各种技术。处理被拦截的函数调用、事件、消息的代码,被称为钩子(hook)。
Hook 是 PyTorch 中一个十分有用的特性。利用它,我们可以不必改变网络输入输出的结构,方便地获取、改变网络中间层变量的值和梯度。这个功能被广泛用于可视化神经网络中间层的 feature、gradient,从而诊断神经网络中可能出现的问题,分析网络有效性。本文将结合代码,由浅入深地介绍 pytorch 中 hook 的用法。文章分为三部分:
1.Hook for Tensors :针对 Tensor 的 hook
2.Hook for Modules:针对例如 nn.Conv2dnn.Linear等网络模块的 hook
3.Guided Backpropagation:利用 Hook 实现的一段神经网络可视化代码
Hook for Tensors
上面的计算图中,x y w 为叶子节点,而 z 为中间变量
在 PyTorch 的计算图(computation graph)中,只有叶子结点(leaf nodes)的变量会保留梯度。而所有中间变量的梯度只被用于反向传播,一旦完成反向传播,中间变量的梯度就将自动释放,从而节约内存。如下面这段代码所示:
import torch
x = torch.Tensor([0, 1, 2, 3]).requires_grad_()
y = torch.Tensor([4, 5, 6, 7]).requires_grad_()
w = torch.Tensor([1, 2, 3, 4]).requires_grad_()
z = x+y
# z.retain_grad()
o = w.matmul(z)
o.backward()
# o.retain_grad()
print('x.requires_grad:', x.requires_grad) # True
print('y.requires_grad:', y.requires_grad) # True
print('z.requires_grad:', z.requires_grad) # True
print('w.requires_grad:', w.requires_grad) # True
print('o.requires_grad:', o.requires_grad) # True
print('x.grad:', x.grad) # tensor([1., 2., 3., 4.])
print('y.grad:', y.grad) # tensor([1., 2., 3., 4.])
print('w.grad:', w.grad) # tensor([ 4., 6., 8., 10.])
print('z.grad:', z.grad) # None
print('o.grad:', o.grad) # None
由于 z 和 o 为中间变量(并非直接指定数值的变量,而是由别的变量计算得到的变量),它们虽然 requires_grad 的参数都是 True,但是反向传播后,它们的梯度并没有保存下来,而是直接删除了,因此是 None。如果想在反向传播之后保留它们的梯度,则需要特殊指定:把上面代码中的z.retain_grad() 和 o.retain_grad的注释去掉,可以得到它们对应的梯度,运行结果如下所示:
x.requires_grad: True
y.requires_grad: True
z.requires_grad: True
w.requires_grad: True
o.requires_grad: True
x.grad: tensor([1., 2., 3., 4.])
y.grad: tensor([1., 2., 3., 4.])
w.grad: tensor([ 4., 6., 8., 10.])
z.grad: tensor([1., 2., 3., 4.])
o.grad: tensor(1.)
但是,这种加 retain_grad() 的方案会增加内存占用,并不是个好办法,对此的一种替代方案,就是用 hook 保存中间变量的梯度。
对于中间变量z,hook 的使用方式为:z.register_hook(hook_fn),其中 hook_fn为一个用户自定义的函数,其签名为:
hook_fn(grad) -> Tensor or None
它的输入为变量 z 的梯度,输出为一个 Tensor 或者是 None (None 一般用于直接打印梯度)。反向传播时,梯度传播到变量 z,再继续向前传播之前,将会传入 hook_fn。如果hook_fn的返回值是 None,那么梯度将不改变,继续向前传播,如果 hook_fn的返回值是 Tensor 类型,则该 Tensor 将取代 z 原有的梯度,向前传播。
下面的示例代码中 hook_fn 不改变梯度值,仅仅是打印梯度:
import torch
x = torch.Tensor([0, 1, 2, 3]).requires_grad_()
y = torch.Tensor([4, 5, 6, 7]).requires_grad_()
w = torch.Tensor([1, 2, 3, 4]).requires_grad_()
z = x+y
# ===================
def hook_fn(grad):
print(grad)
z.register_hook(hook_fn)
# ===================
o = w.matmul(z)
print('=====Start backprop=====')
o.backward()
print('=====End backprop=====')
print('x.grad:', x.grad)
print('y.grad:', y.grad)
print('w.grad:', w.grad)
print('z.grad:', z.grad)
运行结果如下:
=====Start backprop=====
tensor([1., 2., 3., 4.])
=====End backprop=====
x.grad: tensor([1., 2., 3., 4.])
y.grad: tensor([1., 2., 3., 4.])
w.grad: tensor([ 4., 6., 8., 10.])
z.grad: None
我们发现,z 绑定了hook_fn后,梯度反向传播时将会打印出 o 对 z 的偏导,和上文中z.retain_grad()方法得到的 z 的偏导一致。
接下来可以试一下,在 hook_fn 中改变梯度值,看看会有什么结果。
=====Start backprop=====
tensor([1., 2., 3., 4.])
=====End backprop=====
x.grad: tensor([1., 2., 3., 4.])
y.grad: tensor([1., 2., 3., 4.])
w.grad: tensor([ 4., 6., 8., 10.])
z.grad: None
运行结果如下:
=====Start backprop=====
tensor([2., 4., 6., 8.])
=====End backprop=====
x.grad: tensor([2., 4., 6., 8.])
y.grad: tensor([2., 4., 6., 8.])
w.grad: tensor([ 4., 6., 8., 10.])
z.grad: None
发现 z 的梯度变为两倍后,受其影响,x和y的梯度也都变成了原来的两倍。
在实际代码中,为了方便,也可以用 lambda 表达式来代替函数,简写为如下形式:
import torch
x = torch.Tensor([0, 1, 2, 3]).requires_grad_()
y = torch.Tensor([4, 5, 6, 7]).requires_grad_()
w = torch.Tensor([1, 2, 3, 4]).requires_grad_()
z = x + y
# ===================
z.register_hook(lambda x: 2*x)
z.register_hook(lambda x: print(x))
# ===================
o = w.matmul(z)
print('=====Start backprop=====')
o.backward()
print('=====End backprop=====')
print('x.grad:', x.grad)
print('y.grad:', y.grad)
print('w.grad:', w.grad)
print('z.grad:', z.grad)
运行结果和上面的代码相同,我们发现一个变量可以绑定多个 hook_fn,反向传播时,它们按绑定顺序依次执行。例如上面的代码中,第一个绑定的 hook_fn把 z的梯度乘以2,第二个绑定的hook_fn打印z的梯度。因此反向传播时,也是按照这个顺序执行的,打印出来的 z的梯度值,是其原本梯度值的两倍。
至此,针对对 Tensor 的 hook 就介绍完了。然而它的使用场景一般不多,最常用的 hook 是针对神经网络模块的。
Hook for Modules
网络模块 module 不像上一节中的 Tensor,拥有显式的变量名可以直接访问,而是被封装在神经网络中间。我们通常只能获得网络整体的输入和输出,对于夹在网络中间的模块,我们不但很难得知它输入/输出的梯度,甚至连它输入输出的数值都无法获得。除非设计网络时,在 forward 函数的返回值中包含中间 module 的输出,或者用很麻烦的办法,把网络按照 module 的名称拆分再组合,让中间层提取的 feature 暴露出来。
为了解决这个麻烦,PyTorch 设计了两种 hook:register_forward_hook 和register_backward_hook,分别用来获取正/反向传播时,中间层模块输入和输出的 feature/gradient,大大降低了获取模型内部信息流的难度。
register forward hook
register_forward_hook的作用是获取前向传播过程中,各个网络模块的输入和输出。对于模块module,其使用方式为:module.register_forward_hook(hook_fn) 。其中 hook_fn的签名为:
hook_fn(module, input, output) -> None
它的输入变量分别为:模块,模块的输入,模块的输出,和对 Tensor 的 hook 不同,forward hook 不返回任何值,也就是说不能用它来修改输入或者输出的值,但借助这个 hook,我们可以方便地用预训练的神经网络提取特征,而不用改变预训练网络的结构。下面提供一段示例代码:
import torch
from torch import nn
# 首先我们定义一个模型
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.fc1 = nn.Linear(3, 4)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(4, 1)
self.initialize()
# 为了方便验证,我们将指定特殊的weight和bias
def initialize(self):
with torch.no_grad():
self.fc1.weight = torch.nn.Parameter(
torch.Tensor([[1., 2., 3.],
[-4., -5., -6.],
[7., 8., 9.],
[-10., -11., -12.]]))
self.fc1.bias = torch.nn.Parameter(torch.Tensor([1.0, 2.0, 3.0, 4.0]))
self.fc2.weight = torch.nn.Parameter(torch.Tensor([[1.0, 2.0, 3.0, 4.0]]))
self.fc2.bias = torch.nn.Parameter(torch.Tensor([1.0]))
def forward(self, x):
o = self.fc1(x)
o = self.relu1(o)
o = self.fc2(o)
return o
# 全局变量,用于存储中间层的 feature
total_feat_out = []
total_feat_in = []
# 定义 forward hook function
def hook_fn_forward(module, input, output):
print(module) # 用于区分模块
print('input', input) # 首先打印出来
print('output', output)
total_feat_out.append(output) # 然后分别存入全局 list 中
total_feat_in.append(input)
model = Model()
modules = model.