Fork me on GitHub

指数分布族

指数族分布是一大类分布,基本形式为:

分布函数框架中的h(x),η(θ),T(x)和A(θ)并不是任意定义的,每一部分都有其特殊的意义。
θ是自然参数(natural parameter),通常是一个实数;
h(x)是底层观测值(underlying measure);
T(x)是充分统计量(sufficient statistic);
A(θ)被称为对数规则化(log normalizer)。
---------------------

T(x)是x的充分统计量(能为相应分布提供足够信息的统计量)

为了满足归一化条件,有:

可以看出,当T(x)=x时,e^A(theta)是h(x)的拉普拉斯变换

 指数族分布的例子:

伯努利分布转换成指数族分布形式:

 单变量高斯分布的:

多变量高斯分布的:

 

A(theta)的一阶导:

A(theta)的二阶导:

说明A(theta)是凸函数

 

计算log likehood,然后对theta求导,可得

而A的二次导时大于零的,所以A的一次导是增函数,上述方程最多只有一个解。

 

共轭先验:

似然估计:

我们希望:

比如:

一些例子:

posted @ 2019-07-31 20:49  stardsd  阅读(5706)  评论(0编辑  收藏  举报