Fork me on GitHub

caffe solver 配置详解

 

caffe solver通过协调网络前向推理和反向梯度传播来进行模型优化,并通过权重参数更新来改善网络损失求解最优算法,而solver学习的任务被划分为:监督优化和参数更新,生成损失并计算梯度。caffe solver是caffe中的核心,它定义着整个模型如何运转,不管是命令行方式还是pycaffe接口方式进行网络训练或测试,都是需要一个solver配置文件的,而solver的配置参数总共有42个,罗列如下:

net                       weight_decay              
net_param                 regularization_type       
train_net                 stepsize                  
test_net                  stepvalue                 
train_net_param           clip_gradients            
test_net_param            snapshot                  
train_state               snapshot_prefix           
test_state                snapshot_diff             
test_iter                 snapshot_format           
test_interval             solver_mode               
test_compute_loss         device_id                 
test_initialization       random_seed               
base_lr                   type                      
display                   delta                     
average_loss              momentum2                 
max_iter                  rms_decay                 
iter_size                 debug_info                
lr_policy                 snapshot_after_train      
gamma                     solver_type               
power                     layer_wise_reduce         
momentum                  weights                   

模型网络定义prototxt相关

net: "train_test.prototxt"
net_param {
  name: "LeNet"
  layers {
    name: "mnist"
    type: DATA
    top: "data"
    top: "label"
    data_param {
      source: "examples/mnist/mnist_train_lmdb"
      backend: LMDB
      batch_size: 64
    }
    transform_param {
      scale: 0.00390625
    }
    include: { phase: TRAIN }
  }

 ...

  layers {
    name: "loss"
    type: SOFTMAX_LOSS
    bottom: "ip2"
    bottom: "label"
    top: "loss"
  }
}
train_net: "train.prototxt"
test_net: "test.prototxt"
train_net_param{...}
test_net_param{...}

net:训练网络用的prototxt文件,该文件可能包含不止一个的测试网络,通常不与train_net和test_net同时定义;

net_param:内联的训练网络prototxt定义,可能定义有不止一个的测试网络,通常忽略;

train_net_param:内联的训练网络prototxt定义,通常忽略;

test_net_param:内联的测试网络prototxt定义,通常忽略;

train_net:训练网络用的prototxt文件,通常不与net同时定义;

test_net:测试网络用的prototxt文件,通常不与net同时定义;

模型运行状态

train_state: { 
phase: TRAIN
}
test_state: { 
phase: TEST
stage: 'test-on-test' 
}

train_state:训练状态定义,默认为TRAIN,否则按照模型网络prototxt定义的来运行;

test_state:测试状态定义,默认为TEST并在测试集上进行测试,否则按照模型网络prototxt定义的来运行;

测试网络参数配置

test_iter: 50             
test_interval: 200
test_compute_loss: false    
test_initialization: true

test_iter:测试网络前向推理的迭代次数,注意每测试迭代一次是一个测试网络定义的batch size大小,test_iter与test_batch_size的乘积应为整个测试集的大小;
test_interval:训练时每隔多少次迭代则进行一次测试,默认为0即每次训练完后都会进行一次测试,应该要配置该参数,否则训练速度超级慢;
test_compute_loss:测试时是否计算损失值,默认为假,通常用于debug分析用;
test_initialization:在第一次训练迭代之前先运行一次测试,用于确保内存够用和打印初始的loss值,默认为真;

学习率相关的参数配置

base_lr: 0.1
lr_policy: "multistep"
max_iter: 100000
stepvalue: 10000
stepsize: 5000
gamma: 0.1
power: 0.75

base_lr :初始的学习率;
lr_policy:学习率调整策略;
maxiter:训练迭代的最大次数;
stepsize:lr_policy为“step”时学习率多少次训练迭代会进行调整;
stepvalue:lr_policy为“multistep”时学习率多少次训练迭代会进行调整,该参数可设置多个以用于多次学习率调整;
gamma:用于计算学习率的参数,lr_policy为step、exp、inv、sigmoid时会使用到;
power:用于计算学习率的参数,lr_policy为inv、poly时会使用到;

lr_policy学习率调整策略:

  • - fixed:保持base_lr不变.
  • - step:如果设置为step,则还需要设置一个stepsize,返回base_lr * gamma ^ (floor(iter / stepsize)),其中iter表示当前的迭代次数
  • - exp:返回base_lr * gamma ^ iter, iter为当前迭代次数
  • - inv:如果设置为inv,还需要设置一个power,返回base_lr * (1 + gamma * iter) ^ (- power)
  • - multistep:如果设置为multistep,则还需要设置一个stepvalue。这个参数和step很相似,step是均匀等间隔变化,而multstep则是根据stepvalue值变化
  • - poly:学习率进行多项式误差,返回 base_lr * (1 - iter/max_iter) ^ (power)
  • - sigmoid:学习率进行sigmod衰减,返回 base_lr * ( 1/(1 + exp(-gamma * (iter - stepsize))))

模型优化相关参数

type: "Adam"
solver_type: "Adam"(已弃用)
momentum: 0.9
momentum2: 0.999
rms_decay: 0.98
delta: 1e-8
weight_decay: 0.0005
regularization_type: "L2"
clip_gradients: 0.9

type:优化器类型;
solver_type:已弃用的优化器类型;
momentum:用到动量来进行权重优化的优化器动量;
momentum2:“Adam”优化器的动量参数;
rms_decay:“RMSProp”优化器的衰减参数,其计算方式为MeanSquare(t) = rms_decay*MeanSquare(t-1) + (1-rms_decay)*SquareGradient(t)
delta:RMSProp、AdaGrad、AdaDelta及Adam等优化器计算值为0时的最小限定值,用于防止分母为0等溢出错误;
weight_decay:权重衰减参数,用于防止模型过拟合;
regularization_type:正则化方式,默认为L2正则化,可选的有L0、L1及L2,用于防止模型过拟合;
clip_gradients:限定梯度的最大值,用于防止梯度过大导致梯度爆炸;

可选的caffe优化器类型:

到目前的为止,caffe提供了六种优化算法来求解最优参数,在solver配置文件中,通过设置type类型来选择:

  • Stochastic Gradient Descent (type: "SGD"或“0”)
  • Nesterov’s Accelerated Gradient (type: "Nesterov"或“1”)
  • Adaptive Gradient (type: "AdaGrad"或“2”)
  • RMSprop (type: "RMSProp"或“3”)
  • AdaDelta (type: "AdaDelta"或“4”)
  • Adam (type: "Adam"或“5”)

模型保存快照相关参数

snapshot: 1000
snapshot_prefix: "examples/finetune_pascal_detection/pascal_det_finetune"
snapshot_diff: false
snapshot_format: BINARYPROTO
snapshot_after_train: true

snapshot:保存模型的间隔,即每隔多少次训练迭代保存一次模型快照,默认为0;
snapshot_prefix:模型保存的路径及路径名,但无后缀扩展类型,如果不设定,则使用无扩展的prototxt路径和文件名来作为模型保存文件的路径和文件名;
snapshot_diff:是否保存推理结果中的差异,默认不保存,如果保存可帮助调试但会增大保存文件的大小;
snapshot_format:模型保存的类型,有“HDF5”和“BINARYPROTO”两种,默认为后者BINARYPROTO;
snapshot_after_train:默认为真,即训练后按照模型保存设定的参数来进行快照,否则直到训练结束都不会保存模型;

其他的solver参数

display: 1000
average_loss: 50
iter_size: 1
solver_mode: GPU
device_id: 0
random_seed: 600
debug_info: false
layer_wise_reduce: true
weights: "models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel"

display:训练迭代多少次后显示相关信息到终端,如果置0则不会有任何有效信息打印;
average_loss:显示上一次迭代平均损失值的间隔,默认为1,通常不设定;
iter_size:用于多少个batch_size后再更新梯度,通常在GPU内存不足时用于扩展batch_size,真时的batch_size为iter_size*batch_size大小;
solver_mode:训练时使用CPU还是GPU,默认为GPU;
device_id:使用GPU时的设备id号,默认为0;
random_seed:随机种子起始数字,默认为-1参考系统时钟;
debug_info:默认为假,如果置真,则会打印模型网络学习过程中的状态信息,可用于分析调试;
layer_wise_reduce:数据并行训练的重叠计算和通信,默认为真;
weights:预训练模型路径,可用于加载预训练模型,如果命令行训练时也有定义“--weights”则其优先级更高将会覆盖掉solver文件中该参数的配置,如果命令行训练时有定义“--snapshot”时则其具有最高优先级将会覆盖掉“--weights”,如果存在多个权重模型用于加载,可使用逗号进行分离表示;

 

以上,是目前在caffe-master分支上所能看到的所有solver配置参数,caffe配置过程中如有不清楚的地方可进行参考!

posted @ 2019-02-22 20:25  stardsd  阅读(2693)  评论(0编辑  收藏  举报