Fork me on GitHub

python 进程池和任务量变化测试

 

今天闲,测试了下concurrent.futures 模块中的ThreadPoolExecutor,ProcessPoolExecutor。

对开不同的数量的进程池和任务量时,所耗时间。

复制代码
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
import requests
import time,os
def get_page(url):
    #print('<%s> is getting [%s]'%(os.getpid(),url))
    response = requests.get(url)
    #time.sleep(5)
    if response.status_code==200:  #200代表状态:下载成功了
        return {'url':url,'text':response.text}
def parse_page(res):
    res = res.result()
    #print('<%s> is getting [%s]'%(os.getpid(),res['url']))
    with open('db.txt','a') as f:
        parse_res = 'url:%s size:%s\n'%(res['url'],len(res['text']))
        f.write(parse_res)
if __name__ == '__main__':
    start = time.time()
    p = ThreadPoolExecutor(max_workers=15)
    #p = ProcessPoolExecutor()
    l = [

    ]
    for x in range(200):
        l.append('https://www.sina.com.cn/')
    for url in l:
        res=p.submit(get_page,url)
        #res = p.submit(get_page,url).add_done_callback(parse_page) #这里的回调函数拿到的是一个对象。得
        #  先把返回的res得到一个结果。即在前面加上一个res.result() #谁好了谁去掉回调函数
                                # 回调函数也是一种编程思想。不仅开线程池用,开线程池也用
    p.shutdown()  #相当于进程池里的close和join
    print('',os.getpid())
    print(time.time() - start)

    start = time.time()
    # p = ThreadPoolExecutor()
    p = ProcessPoolExecutor(max_workers=15)
    for url in l:
        res = p.submit(get_page, url)
        # res = p.submit(get_page,url).add_done_callback(parse_page) #这里的回调函数拿到的是一个对象。得
        #  先把返回的res得到一个结果。即在前面加上一个res.result() #谁好了谁去掉回调函数
        # 回调函数也是一种编程思想。不仅开线程池用,开线程池也用
    p.shutdown()  # 相当于进程池里的close和join
    print('', os.getpid())
    print(time.time() - start) 
复制代码

 

复制代码
aaMacBook-Pro:~ aa$  system_profiler SPHardwareDataType
Hardware:

    Hardware Overview:

      Model Name: MacBook Pro
      Model Identifier: MacBookPro14,1
      Processor Name: Intel Core i5
      Processor Speed: 2.3 GHz
      Number of Processors: 1
      Total Number of Cores: 2
      L2 Cache (per Core): 256 KB
      L3 Cache: 4 MB
      Hyper-Threading Technology: Enabled
      Memory: 16 GB
      Boot ROM Version: 198.0.0.0.0
      SMC Version (system): 2.43f6
      Serial Number (system): FVFYL11EHV2H
      Hardware UUID: 39CD8397-D284-5356-BAF4-3E6CE64250C6
复制代码

 

 

 

posted @   神雕爱大侠  阅读(396)  评论(0编辑  收藏  举报
努力加载评论中...
点击右上角即可分享
微信分享提示