深度学习工程实践

Preknowledge

Visualization

  1. Weight & Bias

Overfitting

Data Augmentation

  1. Random crops and scales

    resize the short side of the image to [250, 400], and then crop [244, 244] (target size) from the image

Weight Regularization

L1/L2 Regularization

Stochastic Regularization

  1. Dropout

    train时随机drop了一些输入会导致最后得到的输出期望降低了,因此在test时需要等比例增大输出

  2. DropoutConnect : randomly dropout the connection between neural units

  3. Cutout : randomly mask (set 0 or 255) the input picture

  4. Mixup : (For classification) randomly mixup 2 input pictures and their labels

Training Trick

Hyperparameter optimization

Network Architectures

  1. Squeeze-and-Excitation Network [SENet]

    img

  2. Neural architecture search [NAS] (auto machine learning)

Semantic Segmentation

  1. Fully connected network

Upsampling

  1. Unpooling

  2. Max Unpooling

  3. Transpose convolution (learnable upsampling)

Projects

Project 1

  • Testing on Real Data

  • Application to Downstream Tasks

  • Collect training data by your own phones/cameras:

  • Others

Dataset Model PSNR↑ SSIM↓ LPIPS↑
SyntheticBurstVal dbsr_synthetic_default.pth 39.167 0.946 0.081
DBSRNet_syn_ep0100.pth 39.090 0.945 0.083
BurstSR dbsr_burstsr_default.pth 47.701 0.984 0.029
DBSRNet_burst_ep0040.pth 47.664 0.983 0.030
DBSRNet_burst_bggr_ep0040.pth 43.867 0.964 0.063

解释:

DBSRNet_syn_ep0100.pth:使用提供的人工合成的数据集SyntheticBurstVal训练100 epoches后得到的模型

DBSRNet_burst_ep0040.pth:使用提供的真实拍摄的数据集BurstSR训练40 epoches后得到的模型

DBSRNet_burst_bggr_ep0040.pth:将数据集读取时使用的RGGB的Bayer样式转换为BGGR样式后重新训练的模型

Bayer Pattern PSNR↑ SSIM↓ LPIPS↑
RGGB 28.249 0.813 0.156
BGGR 22.923 0.675 0.292
GRBG 22.543 0.659 0.326
GBRG 22.543 0.659 0.326

Project 2

  • 当两幅图中能够匹配的地方全是重复的像素时会导致特征点匹配失败(无特征点)

    img

Analysis

  1. 图片翻转导致识别效果较差。模型在训练时没有训练过翻转图片

    数据增强、可变形卷积

  2. 视角差异较大

    设计端到端网络

  3. 图像模糊程度不同

  4. 对于镜面物体效果较差

Project 3

Project 4

NeRF

  • 神经网络模型对高频信息不敏感,可以对图片像素坐标(x, y)进行位置编码来提升

    img

Project 5

Presentations

img

My Project

学习车道线检测相关论文及算法,基于开源数据集CULane改进目前最佳算法(CLRerNet),提升检测精度

Reference

posted @ 2024-09-24 09:13  MaximeSHE  阅读(8)  评论(0编辑  收藏  举报