新手立体四子棋AI教程(2)——价值评估函数
上一篇我们完成了整个程序的基础框架,那么在讲到真正的搜索算法前,我们先来看看五子棋如何评估当前局势,以及如何计算某个位置的价值。
一、五子棋
在五子棋中,包括成五,活三,活二等定势,下图为山东师范大学董红安在2005年的硕士毕业论文中使用的的评分表,可以供我们来参考。
但是对于四子棋来说,上述评分却并不适用,因为棋盘空间大小的原因,任何一个维度只有4子的空间,一旦没有落成,或是任意一个位置被对方下了,那么该位置将没有任何价值。
二、潜在可能性评估
我们以这张图来举例,当黑棋在(0,3,0)这个位置落子后,我们来分析之后的可能性。
首先在xy平面内,有如下三种方式取胜:
除xy平面内之外,我们还需要考虑立体斜着四子连成的情况:
最后还要考虑垂直四子连成的情况:
并且在计算价值时,我们要注意,在上述任何一种情况中,只要预计的路线上有对方棋子出现,那么这条线(仅仅是单条线,不是整体)的评分将为0,因为他已经不能实现胜利。
三、展平化
为了更方便的计算,我们通过将chessBoard[x][y][z]符合规则的任意连续的四个子编入序列,并通过计数的方式实现计分。
我们通过一段代码来了解这个过程:
struct flatData{ int a; int b; int c; int d; }; typedef std::vector<flatData> PicesFlatDataList; int isWin(int board[4][4][4]); int ChessBoard::isWin(int board[4][4][4]) { PicesFlatDataList flats; for(int y = 0;y < 4;y++) { for(int z = 0;z < 4;z++) { flatData data; data.a = board[0][y][z]; data.b = board[1][y][z]; data.c = board[2][y][z]; data.d = board[3][y][z]; flats.push_back(data); } } for(int x = 0;x < 4;x++) { for(int z = 0;z < 4;z++) { flatData data; data.a = board[x][0][z]; data.b = board[x][1][z]; data.c = board[x][2][z]; data.d = board[x][3][z]; flats.push_back(data); } } for(int x = 0;x < 4;x++) { for(int y = 0;y < 4;y++) { flatData data; data.a = board[x][y][0]; data.b = board[x][y][1]; data.c = board[x][y][2]; data.d = board[x][y][3]; flats.push_back(data); } } for(int y = 0;y < 4;y++) { flatData data; data.a = board[0][y][0]; data.b = board[1][y][1]; data.c = board[2][y][2]; data.d = board[3][y][3]; flats.push_back(data); } for(int x = 0;x < 4;x++) { flatData data; data.a = board[x][0][0]; data.b = board[x][1][1]; data.c = board[x][2][2]; data.d = board[x][3][3]; flats.push_back(data); } for(int y = 0;y < 4;y++) { flatData data; data.a = board[0][y][3]; data.b = board[1][y][2]; data.c = board[2][y][1]; data.d = board[3][y][0]; flats.push_back(data); } for(int x = 0;x < 4;x++) { flatData data; data.a = board[x][0][3]; data.b = board[x][1][2]; data.c = board[x][2][1]; data.d = board[x][3][0]; flats.push_back(data); } for(int z = 0;z < 4;z++) { flatData data; data.a = board[0][0][z]; data.b = board[1][1][z]; data.c = board[2][2][z]; data.d = board[3][3][z]; flats.push_back(data); } for(int z = 0;z < 4;z++) { flatData data; data.a = board[3][0][z]; data.b = board[2][1][z]; data.c = board[1][2][z]; data.d = board[0][3][z]; flats.push_back(data); } flatData data; data.a = board[0][0][0]; data.b = board[1][1][1]; data.c = board[2][2][2]; data.d = board[3][3][3]; flats.push_back(data); data.a = board[0][0][3]; data.b = board[1][1][2]; data.c = board[2][2][1]; data.d = board[3][3][0]; flats.push_back(data); data.a = board[3][0][0]; data.b = board[2][1][1]; data.c = board[1][2][2]; data.d = board[0][3][3]; flats.push_back(data); data.a = board[3][0][3]; data.b = board[2][1][2]; data.c = board[1][2][1]; data.d = board[0][3][0]; flats.push_back(data);
}
不难看出逻辑简单粗暴,直接遍历整个棋盘,并且将所有横竖斜的可能性加入FlatData的abcd四个位置中,再把该条加入到整个list中,为后续其他功能提供数据。
四、局势评分及输赢判断
在上一步的基础上,我们要做的是根据每组FlatData(展平后的数据格式)来给出我们评估的分数。
int whiteNum = 0,blackNum = 0; for(auto iter = flats.begin();iter != flats.end();iter++) { whiteNum = 0; blackNum = 0; if(iter->a == chessPicesStatus::black) blackNum++; else if(iter->a == chessPicesStatus::white) whiteNum++; if(iter->b == chessPicesStatus::black) blackNum++; else if(iter->b == chessPicesStatus::white) whiteNum++; if(iter->c == chessPicesStatus::black) blackNum++; else if(iter->c == chessPicesStatus::white) whiteNum++; if(iter->d == chessPicesStatus::black) blackNum++; else if(iter->d == chessPicesStatus::white) whiteNum++; if(whiteNum == 4) return chessPicesStatus::white; if(blackNum == 4) return chessPicesStatus::black; } return chessPicesStatus::empty;
以上为判断输赢的代码,可以看出就是在上一步的基础上添加了abcd四个位置白棋黑棋的统计,并且判断是否已经获胜。对于获取当前局面分评估的逻辑,其实只是在最后一步统计的时候更加细分一些:
int ChessBoard::getFlatPicesValue(PicesFlatDataList flats, chessPicesStatus status) { int value = 0,whiteNum = 0,blackNum = 0; for(auto iter = flats.begin();iter != flats.end();iter++) { whiteNum = 0; blackNum = 0; if(iter->a == chessPicesStatus::black) blackNum++; else if(iter->a == chessPicesStatus::white) whiteNum++; if(iter->b == chessPicesStatus::black) blackNum++; else if(iter->b == chessPicesStatus::white) whiteNum++; if(iter->c == chessPicesStatus::black) blackNum++; else if(iter->c == chessPicesStatus::white) whiteNum++; if(iter->d == chessPicesStatus::black) blackNum++; else if(iter->d == chessPicesStatus::white) whiteNum++; if(status == chessPicesStatus::white) { //Calculating White Picess if(blackNum != 0) continue; if(whiteNum == 0) value += 1; else if(whiteNum == 1) value += 5; else if(whiteNum == 2) value += 100; else if(whiteNum == 3) value += 5000; else if(whiteNum == 4) { value += 100000; } } else { //Calculating Black Picess if(whiteNum != 0) continue; if(blackNum == 0) value += 1; else if(blackNum == 1) value += 5; else if(blackNum == 2) value += 100; else if(blackNum == 3) value += 5000; else if(blackNum == 4) { value += 100000; } } //cout<<iter->a<<" "<<iter->b<<" "<<iter->c<<" "<<iter->d<<" "<<value<<endl; } return value; }
可以看出我们对于任何一个FlatData,如果该条数据有对方棋子存在,价值即为零,进入下一条。价值从本方棋子数目为零到四分别为1,5,100,5000,10000。
五、单个位置价值评分
为了实现后续的启发式搜索算法,我们需要计算出每个可下位置的得分,单个位置价值评分大体逻辑与上面两步基本一样,是先获取当前棋盘可落子的位置,接着遍历与之相连的各种可能性。但由于立体四子棋支持斜着四子连成,所以需要额外注意,此时展开需要分为SimpleFlat与Non-SimpleFlat。具体区别在于:
红色位置需要计算斜着连成的各种情况,而黑色区域的棋子不需要。所以在遍历时如果判断需要Non-SimpleFlat,则需要把更多的(斜着的若干种可能)添加到list中进行计算。
bool ifSimpleFlat(PicesPos pos) { if(pos.x == 1 && pos.y == 0 || pos.x == 2 && pos.y == 0 || pos.x == 0 && pos.y == 1 || pos.x == 3 && pos.y == 1 || pos.x == 0 && pos.y == 2 || pos.x == 3 && pos.y == 2 || pos.x == 1 && pos.y == 3 || pos.x == 2 && pos.y == 3) return true; else return false; } int ChessBoard::getPosValue(int board[4][4][4],PicesPos *pos, chessPicesStatus side) { PicesFlatDataList flatList; // cout<<"x:"<<pos->x<<" y:"<<pos->y<<" z:"<<pos->z<<endl; if(ifSimpleFlat(*pos)) { /* [0] - [1] | [2] /- [3] -\ [4] /_ [5] _\ */ flatData temp0; temp0.a = board[0][pos->y][pos->z]; temp0.b = board[1][pos->y][pos->z]; temp0.c = board[2][pos->y][pos->z]; temp0.d = board[3][pos->y][pos->z]; flatList.push_back(temp0); flatData temp1; temp1.a = board[pos->x][0][pos->z]; temp1.b = board[pos->x][1][pos->z]; temp1.c = board[pos->x][2][pos->z]; temp1.d = board[pos->x][3][pos->z]; flatList.push_back(temp1); flatData temp2; temp2.a = board[0][pos->y][0]; temp2.b = board[1][pos->y][1]; temp2.c = board[2][pos->y][2]; temp2.d = board[3][pos->y][3]; flatList.push_back(temp2); flatData temp3; temp3.a = board[0][pos->y][3]; temp3.b = board[1][pos->y][2]; temp3.c = board[2][pos->y][1]; temp3.d = board[3][pos->y][0]; flatList.push_back(temp3); flatData temp4; temp4.a = board[pos->x][0][0]; temp4.b = board[pos->x][1][1]; temp4.c = board[pos->x][2][2]; temp4.d = board[pos->x][3][3]; flatList.push_back(temp4); flatData temp5; temp5.a = board[pos->x][0][3]; temp5.b = board[pos->x][1][2]; temp5.c = board[pos->x][2][1]; temp5.d = board[pos->x][3][0]; flatList.push_back(temp5); flatData temp6; temp6.a = board[pos->x][pos->y][0]; temp6.b = board[pos->x][pos->y][1]; temp6.c = board[pos->x][pos->y][2]; temp6.d = board[pos->x][pos->y][3]; flatList.push_back(temp6); } else { /* [0] - [1] | [2] /- [3] -\ [4] /_ [5] _\ [6] -|/ [7] -|\ */ flatData temp0; temp0.a = board[0][pos->y][pos->z]; temp0.b = board[1][pos->y][pos->z]; temp0.c = board[2][pos->y][pos->z]; temp0.d = board[3][pos->y][pos->z]; flatList.push_back(temp0); flatData temp1; temp1.a = board[pos->x][0][pos->z]; temp1.b = board[pos->x][1][pos->z]; temp1.c = board[pos->x][2][pos->z]; temp1.d = board[pos->x][3][pos->z]; flatList.push_back(temp1); flatData temp2; temp2.a = board[0][pos->y][0]; temp2.b = board[1][pos->y][1]; temp2.c = board[2][pos->y][2]; temp2.d = board[3][pos->y][3]; flatList.push_back(temp2); flatData temp3; temp3.a = board[0][pos->y][3]; temp3.b = board[1][pos->y][2]; temp3.c = board[2][pos->y][1]; temp3.d = board[3][pos->y][0]; flatList.push_back(temp3); flatData temp4; temp4.a = board[pos->x][0][0]; temp4.b = board[pos->x][1][1]; temp4.c = board[pos->x][2][2]; temp4.d = board[pos->x][3][3]; flatList.push_back(temp4); flatData temp5; temp5.a = board[pos->x][0][3]; temp5.b = board[pos->x][1][2]; temp5.c = board[pos->x][2][1]; temp5.d = board[pos->x][3][0]; flatList.push_back(temp5); flatData temp6; temp6.a = board[pos->x][pos->y][0]; temp6.b = board[pos->x][pos->y][1]; temp6.c = board[pos->x][pos->y][2]; temp6.d = board[pos->x][pos->y][3]; flatList.push_back(temp6); if(pos->x == 0 && pos->y == 0 || pos->x == 1 && pos->y == 1 || pos->x == 2 && pos->y == 2 || pos->x == 3 && pos->y == 3) { flatData temp7; temp7.a = board[0][0][0]; temp7.b = board[1][1][1]; temp7.c = board[2][2][2]; temp7.d = board[3][3][3]; flatList.push_back(temp7); flatData temp8; temp8.a = board[0][0][3]; temp8.b = board[1][1][2]; temp8.c = board[2][2][1]; temp8.d = board[3][3][0]; flatList.push_back(temp8); } else { flatData temp7; temp7.a = board[3][0][0]; temp7.b = board[2][1][1]; temp7.c = board[1][2][2]; temp7.d = board[0][3][3]; flatList.push_back(temp7); flatData temp8; temp8.a = board[3][0][3]; temp8.b = board[2][1][2]; temp8.c = board[1][2][1]; temp8.d = board[0][3][0]; flatList.push_back(temp8); } } int val = getFlatPicesValue(flatList,side); return val; }
至此,我们已经完成了棋盘的评估函数,下一章我们将讨论极值搜索算法,也就是我们真正的博弈树函数。