ARC060 Digit Sum II
Problem Statement
For integers b(_b_≥2) and n(_n_≥1), let the function f(b,n) be defined as follows:
- f(b,n)=n, when n<b
- f(b,n)=f(b, floor(n_⁄_b))+(n mod b), when n_≥_b
Here, floor(n_⁄_b) denotes the largest integer not exceeding n_⁄_b, and n mod b denotes the remainder of n divided by b.
Less formally, f(b,n) is equal to the sum of the digits of n written in base b. For example, the following hold:
- f(10, 87654)=8+7+6+5+4=30
- f(100, 87654)=8+76+54=138
You are given integers n and s. Determine if there exists an integer b(_b_≥2) such that f(b,n)=s. If the answer is positive, also find the smallest such b.
Constraints
- 1≤_n_≤1011
- 1≤_s_≤1011
- n, s are integers.
Input
The input is given from Standard Input in the following format:
n
s
Output
If there exists an integer b(_b_≥2) such that f(b,n)=s, print the smallest such b. If such b does not exist, print -1
instead.
Sample Input 1
87654
30
Sample Output 1
10
题意
给定一个\(n\)和一个\(s\),找到一个最小的\(b\)使得\(n\)在\(b\)进制下各位之和为\(s\).
分析
假设\(n\)表示为\(b\)进制之后各位上的数字从低位到高位分别为\(a_0,a_1,a_2,...\),显然我们可以得到如下两个等式
并且对于\(\forall i \in [0,+\infty]\)都有\(a_i<b \bigwedge a_i>=0\);
- 当(1)式中的最高次幂至少二次时,\(b\leq \sqrt{n}\),所以我们可以枚举\(b\)的值从\(2\)到\(\sqrt n\),每次求出\(b\)进制下各位数字之和看是否等于\(s\)
- 当(1)式中的最高次幂为1次时,有$$
\left{
\begin{aligned}
a_0+a_1b=n \
a_0+a_1=s\
\end{aligned}
\right.