Linux 内核:设备驱动模型(2)driver-bus-device与probe

Linux 内核:设备驱动模型(2)driver-bus-device与probe

系列:Linux 内核:设备驱动模型 学习总结

参考:

背景

基于 Linux 3.14 来简单分析设备驱动模型。

前言

对于嵌入式Linux的底层程序员而言,对设备驱动模型的学习非常重要:以后看具体的总线设备模型时会更加清晰。

建议先看了解:kobject、kset和ktype

Linux设备模型的目的:为内核建立一个统一的设备模型,从而又一个对系统结构的一般性抽象描述。

换句话说,Linux设备模型提取了设备操作的共同属性,进行抽象,并将这部分共同的属性在内核中实现,而为需要新添加设备或驱动提供一般性的统一接口,这使得驱动程序的开发变得更简单了,而程序员只需要去学习接口就行了。

在内核里,有各种各样的总线,如 usb_bus_typespi_bus_typepci_bus_typeplatform_bus_typei2c_bus_type 等,内核通过总线将设备与驱动分离。

设备模型是层次的结构,层次的每一个节点都是通过kobject实现的,在文件上则体现在sysfs文件系统。

关于kobkect,如果不清楚请移步: http://blog.csdn.net/lizuobin2/article/details/51523693

关于 uevet 、mdev 前面也说过了,请参考: http://blog.csdn.net/lizuobin2/article/details/51534385

kobject 结构可能的层次结构如图:

对于整个 设备总线驱动模型 的样子,大概如下图吧,也并不复杂。

简单来说,bus 负责维护 注册进来的devcie driver ,每注册进来一个device 或者 driver 都会调用 Bus->match 函数 将devicedriver 进行配对,并将它们加入链表。

如果配对成功,调用Bus->probe或者driver->probe函数, 调用kobject_uevent函数设置环境变量(通知用户空间),mdev进行创建设备节点等操作。

我们从 Busdriverdevice三个部分进行详细的分析。

总线:

总线(bus)是linux发展过程中抽象出来的一种设备模型,为了统一管理所有的设备,内核中每个设备都会被挂载在总线上,这个bus可以是对应硬件的bus(i2c bus、spi bus)、可以是虚拟bus(platform bus)。

bus将所有挂在上面的具体设备抽象成两部分,device_driverdevice

driver与device:

driver实现了同类型设备的驱动程序实现,而device则向系统注册具体的设备需要的资源,每当添加一个新的driver(device)到bus中时,都将调用bus的match函数,试图寻找匹配的device(driver)。

如果匹配成功,就调用probe函数,在probe函数中实现设备的初始化、各种配置以及生成用户空间的文件接口。

probe函数是总线在匹配成功时调用的函数,bus->probedrv->probe中只会有一个起效,同时存在时使用bus->probe

初始化

driver_init

所有的bus都是在buses_init,kernel启动以后,进行初始化,最终执行到:

// init/main.c
kernel_init();
    kernel_init_freeable();
        do_basic_setup();
            driver_init(); // 注意这个
            do_initcalls();

看看driver_init做了什么:

// drivers/base/init.c
void __init driver_init(void)
{
    /* These are the core pieces */
    devtmpfs_init();
    devices_init();  // 初始化device
    buses_init();    // 初始化bus
    classes_init();
    firmware_init();
    hypervisor_init();

    /* These are also core pieces, but must come after the
     * core core pieces.
     */
    platform_bus_init();
    cpu_dev_init();
    memory_dev_init();
    container_dev_init();
}

注意devices_initbuses_init这两个函数会创建一些对应的对象,我们能够在sysfs中看到这些对应的对象,在后续中会用到。。

devices_init

// driversbase/base.h
struct kset *devices_kset;
extern struct kset *devices_kset;

// drivers/base/core.c
#include "base.h"
struct kset *devices_kset;
int __init devices_init(void)
{
    // 创建 /sys/devices
    devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
    // 创建 /sys/dev
    dev_kobj = kobject_create_and_add("dev", NULL);
    // 创建 /sys/dev/block
    sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
    // 创建 /sys/dev/char
    sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);

    return 0;
}

buses_init

// drivers/base/bus.c
static struct kset *system_kset;
static struct kset *bus_kset;

int __init buses_init(void)
{
    // 创建 /sys/bus
    bus_kset = kset_create_and_add("bus", &bus_uevent_ops, NULL);
    if (!bus_kset)
        return -ENOMEM;

    // 创建 /sys/devices/system
    system_kset = kset_create_and_add("system", NULL, &devices_kset->kobj);
    if (!system_kset)
        return -ENOMEM;

    return 0;
}

同样是调用了kset_create_and_add,这里涉及到了ksetkobject这些概念。

kset_create_and_add

kobject_create_and_add这个函数首先会调用kobject_create来分配并初始化一个kobject对象,然后调用kobject_add函数在sysfs文件系统中为新生成的kobject对象建立一个新的目录。

// lib/kobject.c
/**
 * kset_create_and_add - create a struct kset dynamically and add it to sysfs
 *
 * @name: the name for the kset
 * @uevent_ops: a struct kset_uevent_ops for the kset
 * @parent_kobj: the parent kobject of this kset, if any.
 *
 * This function creates a kset structure dynamically and registers it
 * with sysfs.  When you are finished with this structure, call
 * kset_unregister() and the structure will be dynamically freed when it
 * is no longer being used.
 *
 * If the kset was not able to be created, NULL will be returned.
 */
struct kset *kset_create_and_add(const char *name,
                 const struct kset_uevent_ops *uevent_ops,
                 struct kobject *parent_kobj)
{
    struct kset *kset;
    int error;

    kset = kset_create(name, uevent_ops, parent_kobj);
    if (!kset)
        return NULL;
    error = kset_register(kset);
    if (error) {
        kfree(kset);
        return NULL;
    }
    return kset;
}
EXPORT_SYMBOL_GPL(kset_create_and_add);

此后,其他bus通过 bus_register 进行注册,实际上会注册到 bus_kest 中。

bus

bus_type原型

// include/linux/device.h
/**
 * struct bus_type - The bus type of the device
 *
 * @name:   The name of the bus.
 * @dev_name:   Used for subsystems to enumerate devices like ("foo%u", dev->id).
 * @dev_root:   Default device to use as the parent.
 * @dev_attrs:  Default attributes of the devices on the bus.
 * @bus_groups: Default attributes of the bus.
 * @dev_groups: Default attributes of the devices on the bus.
 * @drv_groups: Default attributes of the device drivers on the bus.
 * @match:  Called, perhaps multiple times, whenever a new device or driver
 *      is added for this bus. It should return a nonzero value if the
 *      given device can be handled by the given driver.
 * @uevent: Called when a device is added, removed, or a few other things
 *      that generate uevents to add the environment variables.
 * @probe:  Called when a new device or driver add to this bus, and callback
 *      the specific driver's probe to initial the matched device.
 * @remove: Called when a device removed from this bus.
 * @shutdown:   Called at shut-down time to quiesce the device.
 *
 * @online: Called to put the device back online (after offlining it).
 * @offline:    Called to put the device offline for hot-removal. May fail.
 *
 * @suspend:    Called when a device on this bus wants to go to sleep mode.
 * @resume: Called to bring a device on this bus out of sleep mode.
 * @pm:     Power management operations of this bus, callback the specific
 *      device driver's pm-ops.
 * @iommu_ops:  IOMMU specific operations for this bus, used to attach IOMMU
 *              driver implementations to a bus and allow the driver to do
 *              bus-specific setup
 * @p:      The private data of the driver core, only the driver core can
 *      touch this.
 * @lock_key:   Lock class key for use by the lock validator
 *
 * A bus is a channel between the processor and one or more devices. For the
 * purposes of the device model, all devices are connected via a bus, even if
 * it is an internal, virtual, "platform" bus. Buses can plug into each other.
 * A USB controller is usually a PCI device, for example. The device model
 * represents the actual connections between buses and the devices they control.
 * A bus is represented by the bus_type structure. It contains the name, the
 * default attributes, the bus' methods, PM operations, and the driver core's
 * private data.
 */
struct bus_type {
    const char      *name;
    const char      *dev_name;
    struct device       *dev_root;
    struct device_attribute *dev_attrs; /* use dev_groups instead */
    const struct attribute_group **bus_groups;
    const struct attribute_group **dev_groups;
    const struct attribute_group **drv_groups;

    int (*match)(struct device *dev, struct device_driver *drv);
    int (*uevent)(struct device *dev, struct kobj_uevent_env *env);
    int (*probe)(struct device *dev);
    int (*remove)(struct device *dev);
    void (*shutdown)(struct device *dev);

    int (*online)(struct device *dev);
    int (*offline)(struct device *dev);

    int (*suspend)(struct device *dev, pm_message_t state);
    int (*resume)(struct device *dev);

    const struct dev_pm_ops *pm;

    struct iommu_ops *iommu_ops;

    struct subsys_private *p;
    struct lock_class_key lock_key;
};

注册bus:bus_register

/**
 * bus_register - register a bus with the system.
 * @bus: bus.
 *
 * Once we have that, we registered the bus with the kobject
 * infrastructure, then register the children subsystems it has:
 * the devices and drivers that belong to the bus.
 */
int bus_register(struct bus_type *bus)
{
    int retval;
    struct subsys_private *priv;

    priv = kzalloc(sizeof(struct subsys_private), GFP_KERNEL);
    /* 1. bus 与 prv 相互建立联系 */
	// 私有数据 .bus ->  bus 本身
	priv->bus = bus;
	// bus->p 指向 priv
	bus->p = priv;
	// 内核通知链
	BLOCKING_INIT_NOTIFIER_HEAD(&priv->bus_notifier);

    /* 设置 bus->prv->subsys->kobj */
	// 设置 priv->subsys.kobj.name = bus->name  对应于/sys/ 目录下的目录名
	retval = kobject_set_name(&priv->subsys.kobj, "%s", bus->name);
	// 所有的 priv->subsys.kobj.kset 指向 bus_kse 对应于图中④与六的关系
	priv->subsys.kobj.kset = bus_kset;
	// 所有的priv->subsys.kobj.ktype 等于 bus_ktype
	priv->subsys.kobj.ktype = &bus_ktype;
    priv->drivers_autoprobe = 1;

    /* 注册 kset (bus->prv->subsys priv->devices_kset priv->drivers_kset) */	
	// 注册 priv->subsys ,由于 priv->subsys.kobj.kset = bus_kset,所以会在 /sys/bus/目录下创建 目录 如/sys/bus/plateform
	retval = kset_register(&priv->subsys);
	// sysfs_create_file(&bus->p->subsys.kobj, &bus_attr_uevent->attr);
	retval = bus_create_file(bus, &bus_attr_uevent);

	// 由于 priv->subsys.kobj.kset = bus_kset ,因此会创建 /sys/bus/XXX/devices 目录 如 /sys/bus/plateform/devices
	priv->devices_kset = kset_create_and_add("devices", NULL,
						 &priv->subsys.kobj);

	// 同理 创建 /sys/bus/XXX/devices 目录 如 /sys/bus/plateform/drivers
	priv->drivers_kset = kset_create_and_add("drivers", NULL,
						 &priv->subsys.kobj);

	// 初始化 klist_devices 并设置get put 函数  初始化 klist_drivers 不知为何没有get put ?
	klist_init(&priv->klist_devices, klist_devices_get, klist_devices_put);
	klist_init(&priv->klist_drivers, NULL, NULL);

    retval = add_probe_files(bus);

	// 添加 bus->attrs 属性文件
	retval = bus_add_attrs(bus);

    pr_debug("bus: '%s': registered\n", bus->name);
    return 0;
}
EXPORT_SYMBOL_GPL(bus_register);

目前,能通过 bus_register 函数处理的工作有:

1、将 Bus 与 priv 相互建立联系,用于处理私有数据

2、注册通知链BLOCKING_INIT_NOTIFIER_HEAD(&priv->bus_notifier);

3、设置bus->priv->subsys(kset).kobj的名字为 bus->name

4、设置 bus->priv->subsys(kset).kobj.kset 指向 bus_kset

5、设置 bus->priv->subsys(kset).kobj.ktype 为 bus_ktype ,提供 show store 函数

6、设置 bus->priv->drivers_autoprobe = 1;

7、注册 bus->priv->subsys(kset) :对应于图中④与⑥的关系

由于4,且没有指定bus->priv->subsys(kset).kobj.Parent,会将 bus_kest.kobj 设置为 bus->priv->subsys(kset).kobj.Parent

因此,会将bus->priv->subsys(kset).kobj.entry 加入bus_kest链表,且会在/sys/bus目录下创建相应的总线目录/sys/bus/$(bus->name),例如 /sys/bus/platform

8、创建 bus_attr_uevent->attr 属性文件

9、创建并注册 devices_kset devices_kset.kobj.parent = bus->priv->subsys.kobj ,名字为 device ,因此会创建 /sys/bus/$(bus->name)/devices

10、创建并注册 drivers_ksetdrivers_kset.kobj.parent = bus->priv->subsys.kobj ,名字为 drivers ,因此会创建 /sys/bus/$(bus->name)/drivers

11、初始化 bus->priv->klist_devices 链表

12、初始化 bus->priv->klist_drivers 链表

13、创建 bus->bus_attrs 属性文件

例子(bus)

下面来看个例子 ,修改自LDD3 。

lddbus.h

/*
 * Definitions for the virtual LDD bus.
 *
 * lddbus.h
 */

extern struct device ldd_bus;
extern struct bus_type ldd_bus_type;


/*
 * The LDD driver type.
 */

struct ldd_driver {
	char *version;
	struct module *module;
	struct device_driver driver;
	struct driver_attribute version_attr;
};

#define to_ldd_driver(drv) container_of(drv, struct ldd_driver, driver);

/*
 * A device type for things "plugged" into the LDD bus.
 */

struct ldd_device {
	char *name;
	struct ldd_driver *driver;
	struct device dev;
};

#define to_ldd_device(dev) container_of(dev, struct ldd_device, dev);

extern int register_ldd_device(struct ldd_device *);
extern void unregister_ldd_device(struct ldd_device *);
extern int register_ldd_driver(struct ldd_driver *);
extern void unregister_ldd_driver(struct ldd_driver *);

lddbus.c

#include <linux/device.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/string.h>
#include "lddbus.h"

MODULE_AUTHOR("Jonathan Corbet");
MODULE_LICENSE("Dual BSD/GPL");
static char *Version = "$Revision: 1.9 $\n";

//--------------------------------- bus ----------------------------------------

static int ldd_match(struct device *dev, struct device_driver *drv)
{
    struct ldd_device *pdev = to_ldd_device(dev);

    return !strncmp(pdev->name, drv->name, strlen(drv->name));
}

struct bus_type ldd_bus_type = {
    .name = "ldd",
    .match = ldd_match,
};

//--------------------------------- device --------------------------------------

static ssize_t show_bus_version(struct bus_type *bus, char *buf)
{
    return snprintf(buf, strlen(Version), "%s\n", Version);
}

static BUS_ATTR(version, S_IRUGO, show_bus_version, NULL);

// parent device
static void ldd_bus_release(struct device *dev)
{
    printk(KERN_DEBUG "lddbus release\n");
}
static void ldd_dev_release(struct device *dev){ }

struct device ldd_bus = {
    .init_name   = "ldd0", // ldd0 就是总线的名字,这里改成 ldd_bus 更恰当
    .release  = ldd_bus_release
};

int register_ldd_device(struct ldd_device *ldddev)
{

    ldddev->dev.bus = &ldd_bus_type;
    ldddev->dev.parent = &ldd_bus;
    ldddev->dev.release = ldd_dev_release;
    return device_register(&ldddev->dev);
}
EXPORT_SYMBOL(register_ldd_device);

void unregister_ldd_device(struct ldd_device *ldddev)
{
    device_unregister(&ldddev->dev);
}
EXPORT_SYMBOL(unregister_ldd_device);

//--------------------------------- driver --------------------------------------

static ssize_t show_version(struct device_driver *driver, char *buf)
{
    struct ldd_driver *ldriver = to_ldd_driver(driver);

    sprintf(buf, "%s\n", ldriver->version);
    return strlen(buf);
}

int register_ldd_driver(struct ldd_driver *driver)
{
    int ret;

    driver->driver.bus = &ldd_bus_type;
    ret = driver_register(&driver->driver);
    if (ret)
        return ret;
    driver->version_attr.attr.name = "version";
    //driver->version_attr.attr.owner = driver->module;
    driver->version_attr.attr.mode = S_IRUGO;
    driver->version_attr.show = show_version;
    driver->version_attr.store = NULL;
    return driver_create_file(&driver->driver, &driver->version_attr);
}

void unregister_ldd_driver(struct ldd_driver *driver)
{
    driver_unregister(&driver->driver);
}
EXPORT_SYMBOL(register_ldd_driver);
EXPORT_SYMBOL(unregister_ldd_driver);

//--------------------------------- bus ----------------------------------------

static int __init ldd_bus_init(void)
{
    int ret;
    device_register(&ldd_bus);
    ret = bus_register(&ldd_bus_type);
    if (ret)
        return ret;
    if (bus_create_file(&ldd_bus_type, &bus_attr_version))
        printk(KERN_NOTICE "Unable to create version attribute\n");

    return ret;
}

static void ldd_bus_exit(void)
{
    bus_unregister(&ldd_bus_type);
}

module_init(ldd_bus_init);
module_exit(ldd_bus_exit);

Makefile

EXTRA_CFLAGS += $(DEBFLAGS)
#EXTRA_CFLAGS += -I$(INCDIR)

########## change your module name here
MODULE   = lddbus

########## change your obj file(s) here
$(MODULE)-objs:= lddbus.o
#CROSS_COMPILE ?= arm-linux-gnueabihf-
#ARCH 		  ?= arm

ifneq ($(KERNELRELEASE), )
	obj-m := $(MODULE).o

else
	KERNELDIR ?= /lib/modules/$(shell uname -r)/build
	PWD := $(shell pwd)

all:
	$(MAKE_BEGIN)
	@echo
	@if \
	$(MAKE) INCDIR=$(PWD)/configs -C $(KERNELDIR) M=$(PWD) modules; \
	then $(MAKE_DONE);\
	else \
	$(MAKE_ERR);\
	exit 1; \
	fi

endif

show:
	@echo "ARCH     :    ${ARCH}"
	@echo "CC       :    ${CROSS_COMPILE}gcc"
	@echo "KDIR     :    ${KERNELDIR}"
	@echo "$(MODULE):    $(ALLOBJS)"
clean:
	$(CLEAN_BEGIN)
	rm -rf *.cmd *.o *.ko *.mod.c *.symvers *.order *.markers .tmp_versions .*.cmd *~ .*.d
	$(CLEAN_END)

.PHONY:all clean show
#xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
### nothing
#OFFSET=\e[21G    # 21 col
COLOR1=\e[32m  # all --> bule
COLOR2=\e[33m  # clean --> brown
COLOR3=\e[31m  # error --> red
RESET=\e[0m

CLEAN_BEGIN=@echo -e "$(OFFSET)$(COLOR2)Cleaning up...$(RESET)"
CLEAN_END=@echo -e "$(OFFSET)$(COLOR2)Cleaned.$(RESET)"

MAKE_BEGIN=@echo -ne "$(OFFSET)$(COLOR1)Compiling...$(RESET)"
### I do not forget "@", but it DOES NOT need "@"
MAKE_DONE=echo -e "$(OFFSET)$(COLOR1)Compilied.$(RESET)"
MAKE_ERR=echo -e "$(OFFSET)$(COLOR3)[Oops! Error occurred]$(RESET)"
### nothing end here
	#$(MAKE) ARCH=$(ARCH) CROSS_COMPILE=${CROSS_COMPILE} INCDIR=$(PWD)/configs -C $(KERNELDIR) M=$(PWD) modules; \

############# Makefile end here

测试

[root@FriendlyARM /]# cd sys
[root@FriendlyARM /sys]# ls
block class devices fs module
bus dev     firmare kernel
[root@FriendlyARM isys]# cd bus
[root@FriendlyARM bus]# ls
hid ldd platform sdio usb-serial i2c mmc scsi usb
[root@FriendlyARM bus]# cd ldd
[root@FriendlyARM ldd]# ls
devices drivers_autoprobe uevent
drivers drivers_probe     version

insmod bus.ko 之后发现,/sys/bus 目录下多了一个 ldd目录,这个目录就是我们向内核注册的 总线 ldd 。

该目录下有一个devices 和 drivers目录,因为现在并没有向该总线注册任何的驱动和设备,因此这两个文件夹是空的。

[root@FriendlyARM ldd]#ls devices
[root@FriendlyARM ldd]#ls drivers
[root@FriendlyARM ldd]#

cat version 会调用show函数,显示我们在 Bus 中设置的属性。

[root@FriendlyARM ldd]#cat version
$Revision: 1.9

driver

整体流程

driver_register(drv) [core.c]
  bus_add_driver(drv) [bus.c]
    if (drv->bus->p->drivers_autoprobe)
      driver_attach(dev)[dd.c]
        bus_for_each_dev(dev->bus, NULL, drv,__driver_attach)
        __driver_attach(dev, drv) [dd.c]
          driver_match_device(drv, dev) [base.h]
            drv-bus->match ? drv->bus-amatch(dev, drv) : 1
            if false, return;
          driver_probe_device(drv, dev) [dd.c]
            really_probe(dev, drv) [dd.c]
              dev-driver = drv;
              if (dev-bus->probe)
                dev->bus->probe(dev);
              else if (drv->probe)
                drv-aprobe(dev);
              probe_failed:
                dev->-driver = NULL;

device_driver原型

// include/linux/device.h
/**
 * struct device_driver - The basic device driver structure
 * @name:   Name of the device driver.
 * @bus:    The bus which the device of this driver belongs to.
 * @owner:  The module owner.
 * @mod_name:   Used for built-in modules.
 * @suppress_bind_attrs: Disables bind/unbind via sysfs.
 * @of_match_table: The open firmware table.
 * @acpi_match_table: The ACPI match table.
 * @probe:  Called to query the existence of a specific device,
 *      whether this driver can work with it, and bind the driver
 *      to a specific device.
 * @remove: Called when the device is removed from the system to
 *      unbind a device from this driver.
 * @shutdown:   Called at shut-down time to quiesce the device.
 * @suspend:    Called to put the device to sleep mode. Usually to a
 *      low power state.
 * @resume: Called to bring a device from sleep mode.
 * @groups: Default attributes that get created by the driver core
 *      automatically.
 * @pm:     Power management operations of the device which matched
 *      this driver.
 * @p:      Driver core's private data, no one other than the driver
 *      core can touch this.
 *
 * The device driver-model tracks all of the drivers known to the system.
 * The main reason for this tracking is to enable the driver core to match
 * up drivers with new devices. Once drivers are known objects within the
 * system, however, a number of other things become possible. Device drivers
 * can export information and configuration variables that are independent
 * of any specific device.
 */
struct device_driver {
    const char      *name;
    struct bus_type     *bus;

    struct module       *owner;
    const char      *mod_name;  /* used for built-in modules */

    bool suppress_bind_attrs;   /* disables bind/unbind via sysfs */

    const struct of_device_id   *of_match_table;
    const struct acpi_device_id *acpi_match_table;

    int (*probe) (struct device *dev);
    int (*remove) (struct device *dev);
    void (*shutdown) (struct device *dev);
    int (*suspend) (struct device *dev, pm_message_t state);
    int (*resume) (struct device *dev);
    const struct attribute_group **groups;

    const struct dev_pm_ops *pm;

    struct driver_private *p;
};

注册驱动并匹配:driver_register

// drivers/base/driver.c

/**
 * driver_register - register driver with bus
 * @drv: driver to register
 *
 * We pass off most of the work to the bus_add_driver() call,
 * since most of the things we have to do deal with the bus
 * structures.
 */
int driver_register(struct device_driver *drv)
{
    int ret;
    struct device_driver *other;

    // 判断是否被注册过了。
    other = driver_find(drv->name, drv->bus);
    if (other) {
        return -EBUSY;
    }

    // 1、添加驱动到bus中
    ret = bus_add_driver(drv);
    // 2、
    ret = driver_add_groups(drv, drv->groups);
    kobject_uevent(&drv->p->kobj, KOBJ_ADD);

    return ret;
}
EXPORT_SYMBOL_GPL(driver_register);

driver_register做了这几件事情:

1、判断driver是否被注册过:通过名字查找总线中是否已经存在同名的对象

2、把驱动添加进bus中,

3、进行通知到用户空间。

在bus_add_driver中注册

// drivers/base/base.h
struct driver_private {
    struct kobject kobj;
    struct klist klist_devices;
    struct klist_node knode_bus;
    struct module_kobject *mkobj;
    struct device_driver *driver;
};

// drivers/base/bus.c
/**
 * bus_add_driver - Add a driver to the bus.
 * @drv: driver.
 */
int bus_add_driver(struct device_driver *drv)
{
    struct bus_type *bus;
    // 驱动的私有数据
    struct driver_private *priv;
    int error = 0;

    // 找到对应的总线
    bus = bus_get(drv->bus);

    priv = kzalloc(sizeof(*priv), GFP_KERNEL);

    // 初始化私有数据,并登记到 驱动 中
    klist_init(&priv->klist_devices, NULL, NULL);
    priv->driver = drv;
    drv->p = priv;

    // 在/sys/bus/xxx/drivers 目录下创建目录
    priv->kobj.kset = bus->p->drivers_kset;
    error = kobject_init_and_add(&priv->kobj, &driver_ktype, NULL,
                                 "%s", drv->name);

    // 1、匹配 dev
    if (drv->bus->p->drivers_autoprobe) {
        error = driver_attach(drv);
    }

    // 将 driver 加入 Bus 的 drivers 链表中
    klist_add_tail(&priv->knode_bus, &bus->p->klist_drivers);
    // 如果设置了drv->mod_name 根据名字寻找模块
    module_add_driver(drv->owner, drv);

    // 在/sys/bus/xxx/drivers/创建属性文件
    error = driver_create_file(drv, &driver_attr_uevent);

    error = driver_add_attrs(bus, drv);


    if (!drv->suppress_bind_attrs) {
        error = add_bind_files(drv);
    }

    kobject_uevent(&priv->kobj, KOBJ_ADD);
    return 0;
}

在向Bus注册一个driver时,会调用到 driver_attch来寻找与之配对的 deivice

driver_attach

从逻辑上来说,一个驱动可以支持多个设备;一个设备只能绑定一个驱动。

因此,driver_attach最终一一遍历目前所有的驱动和设备,并绑定对应的设备。

// drivers/base/dd.c
/**
 * driver_attach - try to bind driver to devices.
 * @drv: driver.
 *
 * Walk the list of devices that the bus has on it and try to
 * match the driver with each one.  If driver_probe_device()
 * returns 0 and the @dev->driver is set, we've found a
 * compatible pair.
 */
int driver_attach(struct device_driver *drv)
{
    return bus_for_each_dev(drv->bus, NULL, drv, __driver_attach);
}
EXPORT_SYMBOL_GPL(driver_attach);
遍历bus_for_each_dev
/**
 * bus_for_each_dev - device iterator.
 * @bus: bus type.
 * @start: device to start iterating from.
 * @data: data for the callback.
 * @fn: function to be called for each device.
 *
 * Iterate over @bus's list of devices, and call @fn for each,
 * passing it @data. If @start is not NULL, we use that device to
 * begin iterating from.
 *
 * We check the return of @fn each time. If it returns anything
 * other than 0, we break out and return that value.
 *
 * NOTE: The device that returns a non-zero value is not retained
 * in any way, nor is its refcount incremented. If the caller needs
 * to retain this data, it should do so, and increment the reference
 * count in the supplied callback.
 */
int bus_for_each_dev(struct bus_type *bus, struct device *start,
             void *data, int (*fn)(struct device *, void *))
{
    // 迭代器,在这里用于遍历device
    struct klist_iter i;
    struct device *dev;
    int error = 0;

    if (!bus || !bus->p)
        return -EINVAL;

    // 设置迭代器的起点为 链表的头部
    klist_iter_init_node(&bus->p->klist_devices, &i,
                 (start ? &start->p->knode_bus : NULL));
    while ((dev = next_device(&i)) && !error)
        error = fn(dev, data);
    klist_iter_exit(&i);
    return error;
}
EXPORT_SYMBOL_GPL(bus_for_each_dev);

根据名字我们应该能猜测出来,调用Bus的每一个 dev 与 driver 进行 __driver_attach

具体的做法是通过初始化一个迭代器指向链表的头部(在这里是bus->p->klist_devices),然后通过next_device进行遍历,并逐一执行fn方法。

关于迭代器的函数我这里贴出来,但是不再做深入的解释了。

// lib/klist.c
void klist_iter_init_node(struct klist *k, struct klist_iter *i,
              struct klist_node *n)
{
    i->i_klist = k;
    i->i_cur = n;
    if (n)
        kref_get(&n->n_ref);
}
EXPORT_SYMBOL_GPL(klist_iter_init_node);

// drivers/base/core.c
static struct device *next_device(struct klist_iter *i)
{
    struct klist_node *n = klist_next(i);
    struct device *dev = NULL;
    struct device_private *p;

    if (n) {
        p = to_device_private_parent(n);
        dev = p->device;
    }
    return dev;
}

// drivers/base/base.h
#define to_device_private_parent(obj)   \
    container_of(obj, struct device_private, knode_parent)

我们看看fn,在这里它执行的是__driver_attach

__driver_attach
static int __driver_attach(struct device *dev, void *data)
{
    struct device_driver *drv = data;

    /*
     * Lock device and try to bind to it. We drop the error
     * here and always return 0, because we need to keep trying
     * to bind to devices and some drivers will return an error
     * simply if it didn't support the device.
     *
     * driver_probe_device() will spit a warning if there
     * is an error.
     */

    // 1、匹配 现有的 drv 与 现在的 dev
    if (!driver_match_device(drv, dev))
        return 0;

    if (dev->parent)    /* Needed for USB */
        device_lock(dev->parent);
    device_lock(dev);
    // 2、从这里开始probe
    if (!dev->driver)
        driver_probe_device(drv, dev);
    device_unlock(dev);
    if (dev->parent)
        device_unlock(dev->parent);

    return 0;
}

在 __driver_attach 中,首先会调用到 driver_match_device 函数(return drv->bus->match ? drv->bus->match(dev, drv) : 1;)进行匹配:

// drivers/base/base.h
static inline int driver_match_device(struct device_driver *drv,
                      struct device *dev)
{
    return drv->bus->match ? drv->bus->match(dev, drv) : 1;
}

match方法存在时,进行匹配,返回0代表成功。否则代表失败。

如果匹配成功,则继续调用 driver_probe_device(drv, dev)

// drivers/base/dd.c
/**
 * driver_probe_device - attempt to bind device & driver together
 * @drv: driver to bind a device to
 * @dev: device to try to bind to the driver
 *
 * This function returns -ENODEV if the device is not registered,
 * 1 if the device is bound successfully and 0 otherwise.
 *
 * This function must be called with @dev lock held.  When called for a
 * USB interface, @dev->parent lock must be held as well.
 */
int driver_probe_device(struct device_driver *drv, struct device *dev)
{
    int ret = 0;

    if (!device_is_registered(dev))
        return -ENODEV;

    pr_debug("bus: '%s': %s: matched device %s with driver %s\n",
         drv->bus->name, __func__, dev_name(dev), drv->name);

    pm_runtime_barrier(dev);
    ret = really_probe(dev, drv);
    pm_request_idle(dev);

    return ret;
}

在really_probe中probe

device原型
// include/linux/device.h
struct device {
    struct device       *parent;

    struct device_private   *p;

    struct kobject kobj;
    const char      *init_name; /* initial name of the device */
    const struct device_type *type;

    struct mutex        mutex;  /* mutex to synchronize calls to
                     * its driver.
                     */

    struct bus_type *bus;       /* type of bus device is on */
    struct device_driver *driver;   /* which driver has allocated this
                       device */
    void        *platform_data; /* Platform specific data, device
                       core doesn't touch it */
    struct dev_pm_info  power;
    struct dev_pm_domain    *pm_domain;

    struct device_dma_parameters *dma_parms;

    struct list_head    dma_pools;  /* dma pools (if dma'ble) */


    struct device_node  *of_node; /* associated device tree node */
    struct acpi_dev_node    acpi_node; /* associated ACPI device node */

    dev_t           devt;   /* dev_t, creates the sysfs "dev" */
    u32         id; /* device instance */

    spinlock_t      devres_lock;
    struct list_head    devres_head;

    struct klist_node   knode_class;
    struct class        *class;
    const struct attribute_group **groups;  /* optional groups */

    void    (*release)(struct device *dev);
    struct iommu_group  *iommu_group;

    bool            offline_disabled:1;
    bool            offline:1;
};
really_probe
// drivers/base/dd.c
static int really_probe(struct device *dev, struct device_driver *drv)
{
    int ret = 0;

    atomic_inc(&probe_count);
    pr_debug("bus: '%s': %s: probing driver %s with device %s\n",
         drv->bus->name, __func__, drv->name, dev_name(dev));
    WARN_ON(!list_empty(&dev->devres_head));

    // 1、关联 dev 与 drv
    dev->driver = drv;

    /* If using pinctrl, bind pins now before probing */
    ret = pinctrl_bind_pins(dev);
    if (ret)
        goto probe_failed;

    // 2、更新 sysfs
    if (driver_sysfs_add(dev)) {
        printk(KERN_ERR "%s: driver_sysfs_add(%s) failed\n",
            __func__, dev_name(dev));
        goto probe_failed;
    }

    // 3、执行真正的probe
    if (dev->bus->probe) {
        ret = dev->bus->probe(dev);
        if (ret)
            goto probe_failed;
    } else if (drv->probe) {
        ret = drv->probe(dev);
        if (ret)
            goto probe_failed;
    }

    // 4、绑定
    driver_bound(dev);
    ret = 1;
    pr_debug("bus: '%s': %s: bound device %s to driver %s\n",
         drv->bus->name, __func__, dev_name(dev), drv->name);
    goto done;

probe_failed:
    devres_release_all(dev);
    driver_sysfs_remove(dev);
    dev->driver = NULL;
    dev_set_drvdata(dev, NULL);

    if (ret == -EPROBE_DEFER) {
        /* Driver requested deferred probing */
        dev_info(dev, "Driver %s requests probe deferral\n", drv->name);
        driver_deferred_probe_add(dev);
    } else if (ret != -ENODEV && ret != -ENXIO) {
        /* driver matched but the probe failed */
        printk(KERN_WARNING
               "%s: probe of %s failed with error %d\n",
               drv->name, dev_name(dev), ret);
    } else {
        pr_debug("%s: probe of %s rejects match %d\n",
               drv->name, dev_name(dev), ret);
    }
    /*
     * Ignore errors returned by ->probe so that the next driver can try
     * its luck.
     */
    ret = 0;
done:
    atomic_dec(&probe_count);
    wake_up(&probe_waitqueue);
    return ret;
}

really_probe 中干了四件大事。

关联dev与drv

在 dev 中记录 driver :

dev->driver = drv;

已经match上了配对成功了嘛,所以可以将该device和driver关联起来: dev <- drv

然而device_driver中并没有device成员,因此并没有 drv <- dev

通知bus、更新sysfs
driver_sysfs_add(dev);

1、通知总线绑定了设备和驱动

2、创建两个symlink,更新sysfs

  • 在sysfs中该 dev.kobj 目录下创建与之匹配的driver的符号连接,名字为“driver”
  • 在sysfs中该 driver.kobj 目录下创建与之匹配的device的符号连接,名字为 kobject_name(&dev->kobj)
// drivers/base/dd.c
static int driver_sysfs_add(struct device *dev)
{
    int ret;

    // 通知总线绑定了设备和驱动
    if (dev->bus)
        blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
                                     BUS_NOTIFY_BIND_DRIVER, dev);
    /* 例如,
       在/sys/bus/XXX/drivers/XXX 目录下建立symlink,链接名为 kobj->name, 
       链接指向 /sys/devices/platform/XXX 
    */
    ret = sysfs_create_link(&dev->driver->p->kobj, &dev->kobj,
                            kobject_name(&dev->kobj));
    if (ret == 0) {
        /*  例如,
            在/sys/devices/platform/XXX/下建立symlink,链接名为driver, 
            指向/sys/bus/xxx/drivers目录下的某个目录*/
        ret = sysfs_create_link(&dev->kobj, &dev->driver->p->kobj,
                                "driver");
        if (ret)
            sysfs_remove_link(&dev->driver->p->kobj,
                              kobject_name(&dev->kobj));
    }
    return ret;
}
执行真正的 probe 方法

多态

    if (dev->bus->probe) {
        ret = dev->bus->probe(dev);
        if (ret)
            goto probe_failed;
    } else if (drv->probe) {
        ret = drv->probe(dev);
        if (ret)
            goto probe_failed;
    }

probe的规则是:如果BUS上实现了probe就用BUS的probe;否则才会用driver的probe。

绑定
driver_bound(dev);

将 device 放入 driver 链表中。

看来一个device只能有一个driver,但是driver可以支持多个device

// drivers/base/dd.c
static void driver_bound(struct device *dev)
{
    // 判断是否绑定过
    if (klist_node_attached(&dev->p->knode_driver)) {
        printk(KERN_WARNING "%s: device %s already bound\n",
            __func__, kobject_name(&dev->kobj));
        return;
    }

    // 将 device 放入 driver 链表中。
    klist_add_tail(&dev->p->knode_driver, &dev->driver->p->klist_devices);

    /*
     * Make sure the device is no longer in one of the deferred lists and
     * kick off retrying all pending devices
     */
    driver_deferred_probe_del(dev);
    driver_deferred_probe_trigger();

    if (dev->bus)
        blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
                         BUS_NOTIFY_BOUND_DRIVER, dev);
}

// lib/klist.c
/**
 * klist_node_attached - Say whether a node is bound to a list or not.
 * @n: Node that we're testing.
 */
int klist_node_attached(struct klist_node *n)
{
    return (n->n_klist != NULL);
}
EXPORT_SYMBOL_GPL(klist_node_attached);

kobject_uevent通知用户空间

主要是在/sys/devices/.../中添加dev的uevent属性文件,先不说这个。

例子(drv)

ldd_drv.c

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/sched.h> 
#include <asm/uaccess.h>
#include <linux/io.h>
#include "lddbus.h"
 
struct ldd_driver ldd_drv = {
	.version 	= "version 1.0\n",	
	.driver = {
		.name = "myldd",
	},
};
 
static int ldd_drv_init(void){
	register_ldd_driver(&ldd_drv);
	return 0;
}
 
static void ldd_drv_exit(void){
	
	unregister_ldd_driver(&ldd_drv);
}
 
module_init(ldd_drv_init);
module_exit(ldd_drv_exit);
MODULE_LICENSE("GPL");

测试

[root@FriendlyARM \]# insmod drv.ko
[root@FriendlyARM  ]# cd sys /bus/ldd/drivers/
[root@FriendlyARM drivers]ls
myldd
[root@FriendlyARM drivers] cd myldd/
[root@FriendlyARM myldd]#ls
bind uevent unbind version
[root@FriendlyARM myldd]# cat version
version 1.0

insmod drv.ko 之后,我们会发现 /sys/bus/ldd/drivers 目录下多了一个 myldd 目录,这就是我们向内核注册的ldd总线上的myldd驱动程序。同样 cat version 会显示设定好的属性。

device

整体流程

device_register(dev)[core.c]
  device_initialize()
  device_add(dev) [core.c]
    bus_add_device(dev)
    bus_probe_device(dev) [bus.c]
      if (dev->bus && dev->bus-op->drivers_autoprobe)
        device_attach(dev) [dd.c]
          if (dev->driver)
            device_bind_driver(dev)
          else // 从这里开始,与 driver一样
            bus_for_each_dev(dev->bus, NULL, drv,__driver_attach)
              __driver_attach(dev, drv) [dd.c]
                driver_match_device(drv, dev) [base.h]
                  drv-bus->match ? drv->bus-amatch(dev, drv) : 1
                  if false, return;
                driver_probe_device(drv, dev) [dd.c]
                  really_probe(dev, drv) [dd.c]
                    dev-driver = drv;
                    if (dev-bus->probe)
                      dev->bus->probe(dev);
                    else if (drv->probe)
                      drv-aprobe(dev);
                    probe_failed:
                      dev->-driver = NULL;

device原型

// include/linux/device.h
/**
 * struct device - The basic device structure
 * @parent: The device's "parent" device, the device to which it is attached.
 *      In most cases, a parent device is some sort of bus or host
 *      controller. If parent is NULL, the device, is a top-level device,
 *      which is not usually what you want.
 * @p:      Holds the private data of the driver core portions of the device.
 *      See the comment of the struct device_private for detail.
 * @kobj:   A top-level, abstract class from which other classes are derived.
 * @init_name:  Initial name of the device.
 * @type:   The type of device.
 *      This identifies the device type and carries type-specific
 *      information.
 * @mutex:  Mutex to synchronize calls to its driver.
 * @bus:    Type of bus device is on.
 * @driver: Which driver has allocated this
 * @platform_data: Platform data specific to the device.
 *      Example: For devices on custom boards, as typical of embedded
 *      and SOC based hardware, Linux often uses platform_data to point
 *      to board-specific structures describing devices and how they
 *      are wired.  That can include what ports are available, chip
 *      variants, which GPIO pins act in what additional roles, and so
 *      on.  This shrinks the "Board Support Packages" (BSPs) and
 *      minimizes board-specific #ifdefs in drivers.
 * @power:  For device power management.
 *      See Documentation/power/devices.txt for details.
 * @pm_domain:  Provide callbacks that are executed during system suspend,
 *      hibernation, system resume and during runtime PM transitions
 *      along with subsystem-level and driver-level callbacks.
 * @pins:   For device pin management.
 *      See Documentation/pinctrl.txt for details.
 * @numa_node:  NUMA node this device is close to.
 * @dma_mask:   Dma mask (if dma'ble device).
 * @coherent_dma_mask: Like dma_mask, but for alloc_coherent mapping as not all
 *      hardware supports 64-bit addresses for consistent allocations
 *      such descriptors.
 * @dma_parms:  A low level driver may set these to teach IOMMU code about
 *      segment limitations.
 * @dma_pools:  Dma pools (if dma'ble device).
 * @dma_mem:    Internal for coherent mem override.
 * @cma_area:   Contiguous memory area for dma allocations
 * @archdata:   For arch-specific additions.
 * @of_node:    Associated device tree node.
 * @acpi_node:  Associated ACPI device node.
 * @devt:   For creating the sysfs "dev".
 * @id:     device instance
 * @devres_lock: Spinlock to protect the resource of the device.
 * @devres_head: The resources list of the device.
 * @knode_class: The node used to add the device to the class list.
 * @class:  The class of the device.
 * @groups: Optional attribute groups.
 * @release:    Callback to free the device after all references have
 *      gone away. This should be set by the allocator of the
 *      device (i.e. the bus driver that discovered the device).
 * @iommu_group: IOMMU group the device belongs to.
 *
 * @offline_disabled: If set, the device is permanently online.
 * @offline:    Set after successful invocation of bus type's .offline().
 *
 * At the lowest level, every device in a Linux system is represented by an
 * instance of struct device. The device structure contains the information
 * that the device model core needs to model the system. Most subsystems,
 * however, track additional information about the devices they host. As a
 * result, it is rare for devices to be represented by bare device structures;
 * instead, that structure, like kobject structures, is usually embedded within
 * a higher-level representation of the device.
 */
struct device {
    struct device       *parent;

    struct device_private   *p;

    struct kobject kobj;
    const char      *init_name; /* initial name of the device */
    const struct device_type *type;

    struct mutex        mutex;  /* mutex to synchronize calls to
                     * its driver.
                     */

    struct bus_type *bus;       /* type of bus device is on */
    struct device_driver *driver;   /* which driver has allocated this
                       device */
    void        *platform_data; /* Platform specific data, device
                       core doesn't touch it */
    struct dev_pm_info  power;
    struct dev_pm_domain    *pm_domain;

#ifdef CONFIG_PINCTRL
    struct dev_pin_info *pins;
#endif

#ifdef CONFIG_NUMA
    int     numa_node;  /* NUMA node this device is close to */
#endif
    u64     *dma_mask;  /* dma mask (if dma'able device) */
    u64     coherent_dma_mask;/* Like dma_mask, but for
                         alloc_coherent mappings as
                         not all hardware supports
                         64 bit addresses for consistent
                         allocations such descriptors. */

    struct device_dma_parameters *dma_parms;

    struct list_head    dma_pools;  /* dma pools (if dma'ble) */

    struct dma_coherent_mem *dma_mem; /* internal for coherent mem
                         override */
#ifdef CONFIG_DMA_CMA
    struct cma *cma_area;       /* contiguous memory area for dma
                       allocations */
#endif
    /* arch specific additions */
    struct dev_archdata archdata;

    struct device_node  *of_node; /* associated device tree node */
    struct acpi_dev_node    acpi_node; /* associated ACPI device node */

    dev_t           devt;   /* dev_t, creates the sysfs "dev" */
    u32         id; /* device instance */

    spinlock_t      devres_lock;
    struct list_head    devres_head;

    struct klist_node   knode_class;
    struct class        *class;
    const struct attribute_group **groups;  /* optional groups */

    void    (*release)(struct device *dev);
    struct iommu_group  *iommu_group;

    bool            offline_disabled:1;
    bool            offline:1;
};

device_register

/**
 * device_register - register a device with the system.
 * @dev: pointer to the device structure
 *
 * This happens in two clean steps - initialize the device
 * and add it to the system. The two steps can be called
 * separately, but this is the easiest and most common.
 * I.e. you should only call the two helpers separately if
 * have a clearly defined need to use and refcount the device
 * before it is added to the hierarchy.
 *
 * For more information, see the kerneldoc for device_initialize()
 * and device_add().
 *
 * NOTE: _Never_ directly free @dev after calling this function, even
 * if it returned an error! Always use put_device() to give up the
 * reference initialized in this function instead.
 */
int device_register(struct device *dev)
{
    device_initialize(dev);
    return device_add(dev);
}
EXPORT_SYMBOL_GPL(device_register);

device_initialize

/**
 * device_initialize - init device structure.
 * @dev: device.
 *
 * This prepares the device for use by other layers by initializing
 * its fields.
 * It is the first half of device_register(), if called by
 * that function, though it can also be called separately, so one
 * may use @dev's fields. In particular, get_device()/put_device()
 * may be used for reference counting of @dev after calling this
 * function.
 *
 * All fields in @dev must be initialized by the caller to 0, except
 * for those explicitly set to some other value.  The simplest
 * approach is to use kzalloc() to allocate the structure containing
 * @dev.
 *
 * NOTE: Use put_device() to give up your reference instead of freeing
 * @dev directly once you have called this function.
 */
void device_initialize(struct device *dev)
{
    // 设置 dev->kobj.kset 为 devices_kset
    dev->kobj.kset = devices_kset;
    kobject_init(&dev->kobj, &device_ktype);
    INIT_LIST_HEAD(&dev->dma_pools);
    mutex_init(&dev->mutex);
    lockdep_set_novalidate_class(&dev->mutex);
    spin_lock_init(&dev->devres_lock);
    INIT_LIST_HEAD(&dev->devres_head);
    device_pm_init(dev);
    set_dev_node(dev, -1);
}
EXPORT_SYMBOL_GPL(device_initialize);

做了一些设备有关的基本初始化。

device_add

// drviers/base/core.c
/**
 * device_add - add device to device hierarchy.
 * @dev: device.
 *
 * This is part 2 of device_register(), though may be called
 * separately _iff_ device_initialize() has been called separately.
 *
 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
 * to the global and sibling lists for the device, then
 * adds it to the other relevant subsystems of the driver model.
 *
 * Do not call this routine or device_register() more than once for
 * any device structure.  The driver model core is not designed to work
 * with devices that get unregistered and then spring back to life.
 * (Among other things, it's very hard to guarantee that all references
 * to the previous incarnation of @dev have been dropped.)  Allocate
 * and register a fresh new struct device instead.
 *
 * NOTE: _Never_ directly free @dev after calling this function, even
 * if it returned an error! Always use put_device() to give up your
 * reference instead.
 */
int device_add(struct device *dev)
{
    struct device *parent = NULL;
    struct kobject *kobj;
    struct class_interface *class_intf;
    int error = -EINVAL;

    dev = get_device(dev);
    if (!dev)
        goto done;

    // 初始化 device的 私有数据
    if (!dev->p) {
        error = device_private_init(dev);
        if (error)
            goto done;
    }

    /*
     * for statically allocated devices, which should all be converted
     * some day, we need to initialize the name. We prevent reading back
     * the name, and force the use of dev_name()
     */
    /* 初始化设备内部的kobject的名字 */
    // 如果初始名字(init_name)存在,则设为名字 为 init_name
    if (dev->init_name) {
        dev_set_name(dev, "%s", dev->init_name);
        dev->init_name = NULL;
    }

    /* subsystems can specify simple device enumeration */
    // 如果检查发现没有名字,但bus设置了设备名前缀,则以 类似foo%u的方式来设置设备的名字
    // 例如 tty0
    if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
        dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);

    pr_debug("device: '%s': %s\n", dev_name(dev), __func__);

    // 增加设备父设备并增加父设备引用计数,例如:csid的设备节点节v4l-subdev4的父设备是fd8c0000.qcom,msm-cam
    parent = get_device(dev->parent);
    // 获取v4l-subdev4设备目录的父目录是video4linux,video4linux的父目录是fd8c0000.qcom,msm-cam
    kobj = get_device_parent(dev, parent);
    // 在kobject层实现设备父子关系
    if (kobj)
        dev->kobj.parent = kobj;


    /* first, register with generic layer. */
    /* we require the name to be set before, and pass NULL */
    /* 
       把内嵌的kobject注册到设备模型中将设备加入到kobject模型中,
       创建sys相关目录 ,目录名字为kobj->name
    */
    error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
    if (error)
        goto Error;

    /* notify platform of device entry */
    if (platform_notify)
        platform_notify(dev);

    // 创建sys目录下设备的uevent属性文件,通过它可以查看设备的uevent事件
    error = device_create_file(dev, &dev_attr_uevent);
    if (error)
        goto attrError;

    // 如果有主次设备号 创建dev 属性文件
    if (MAJOR(dev->devt)) {
        // 在 /sys/devices中创建设备节点
        error = device_create_file(dev, &dev_attr_dev);

        /* 在/sys/dev/char/或者/sys/dev/block/创建devt的属性的连接文件,
        形如10:45,由主设备号和次设备号构成,指向/sys/devices/.../的具体设备目录,
        该链接文件只具备读属性,显示主设备号:次设备号,如10:45,用户空间udev相应uevent事件时,将根据设备号在/dev下创建节点文件
        */
        error = device_create_sys_dev_entry(dev);


        devtmpfs_create_node(dev);
    }

    // 创建类符号链接,相互创建dev和class之间的链接文件
    error = device_add_class_symlinks(dev);
    // 创建sys目录下设备其他属性文件
    error = device_add_attrs(dev);
    // 将设备加入到管理它的bus总线的设备链表上
    // 创建subsystem链接文件,链接class下的具体的子系统文件夹
    error = bus_add_device(dev);

    error = dpm_sysfs_add(dev);

    device_pm_add(dev);

    /* Notify clients of device addition.  This call must come
     * after dpm_sysfs_add() and before kobject_uevent().
     */
    // 通知 添加设备 事件
    if (dev->bus)
        blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
                         BUS_NOTIFY_ADD_DEVICE, dev);

    kobject_uevent(&dev->kobj, KOBJ_ADD);
    bus_probe_device(dev);
    if (parent)
        klist_add_tail(&dev->p->knode_parent,
                   &parent->p->klist_children);

    if (dev->class) {
        mutex_lock(&dev->class->p->mutex);
        /* tie the class to the device */
        klist_add_tail(&dev->knode_class,
                   &dev->class->p->klist_devices);

        /* notify any interfaces that the device is here */
        list_for_each_entry(class_intf,
                    &dev->class->p->interfaces, node)
            if (class_intf->add_dev)
                class_intf->add_dev(dev, class_intf);
        mutex_unlock(&dev->class->p->mutex);
    }
done:
    put_device(dev);
    return error;

}
EXPORT_SYMBOL_GPL(device_add);
bus_add_device
/**
 * bus_add_device - add device to bus
 * @dev: device being added
 *
 * - Add device's bus attributes.
 * - Create links to device's bus.
 * - Add the device to its bus's list of devices.
 */
int bus_add_device(struct device *dev)
{
    /* 引用计数加一 */
    struct bus_type *bus = bus_get(dev->bus);
    int error = 0;

    if (bus) {
        pr_debug("bus: '%s': add device %s\n", bus->name, dev_name(dev));
        /* 创建相应的属性文件 */
        error = device_add_attrs(bus, dev);


        // 添加属性组。
        error = device_add_groups(dev, bus->dev_groups);

        // 创建 /sys/bus/$(bus->name)/devices/$(dev->name) 到 /sys/devices/$(dev->name) 的软连接
        error = sysfs_create_link(&bus->p->devices_kset->kobj,
                                  &dev->kobj, dev_name(dev));

        // 创建 /sys/devices/$(dev->name)/subsystem 到 /sys/bus/$(bus->name)/devices/$(dev->name) 的软连接
        error = sysfs_create_link(&dev->kobj,
                                  &dev->bus->p->subsys.kobj, "subsystem");
        if (error)
            goto out_subsys;
        // 将 dev 加入 bus 所管理的 devices 链表
        klist_add_tail(&dev->p->knode_bus, &bus->p->klist_devices);
    }
    return 0;

}

bus_probe_device

// drivers/base/bus.c
/**
 * bus_probe_device - probe drivers for a new device
 * @dev: device to probe
 *
 * - Automatically probe for a driver if the bus allows it.
 */
void bus_probe_device(struct device *dev)
{
    struct bus_type *bus = dev->bus;
    struct subsys_interface *sif;
    int ret;

    if (!bus)
        return;

    if (bus->p->drivers_autoprobe) {
        ret = device_attach(dev);
        WARN_ON(ret < 0);
    }

    mutex_lock(&bus->p->mutex);
    list_for_each_entry(sif, &bus->p->interfaces, node)
        if (sif->add_dev)
            sif->add_dev(dev, sif);
    mutex_unlock(&bus->p->mutex);
}
device_attach

从逻辑上来说,一个驱动可以支持多个设备;一个设备只能绑定一个驱动。

device_attach尝试为设备寻找到一个驱动;

因此,device_attach稍微与driver_attach不一样:调用driver_match_device匹配设备和驱动,成功就结束循环退出(而不是执行到循环);

// drivers/base/dd.c
static int __device_attach(struct device_driver *drv, void *data)
{
    struct device *dev = data;

    if (!driver_match_device(drv, dev))
        return 0;

    return driver_probe_device(drv, dev);
}

/**
 * device_attach - try to attach device to a driver.
 * @dev: device.
 *
 * Walk the list of drivers that the bus has and call
 * driver_probe_device() for each pair. If a compatible
 * pair is found, break out and return.
 *
 * Returns 1 if the device was bound to a driver(成功);
 * 0 if no matching driver was found(失败);
 * -ENODEV if the device is not registered(异常).
 *
 * When called for a USB interface, @dev->parent lock must be held.
 */
int device_attach(struct device *dev)
{
    int ret = 0;

    device_lock(dev);
    // 情况1:设备已经有驱动
    if (dev->driver) {
        if (klist_node_attached(&dev->p->knode_driver)) {
            ret = 1;
            goto out_unlock;
        }
        ret = device_bind_driver(dev);
        if (ret == 0)
            ret = 1; // 成功,并退出
        else {
            dev->driver = NULL;
            ret = 0;
        }
    } else { // 情况2:设备没有驱动(通常情况)
        // 遍历总线上的driver链表,进行匹配
        ret = bus_for_each_drv(dev->bus, NULL, dev, __device_attach);
        pm_request_idle(dev);
    }
out_unlock:
    device_unlock(dev);
    return ret;
}
EXPORT_SYMBOL_GPL(device_attach);

此后就是bus_for_each_drv,不再赘述。

例子(dev)

ldd_dev.c

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/sched.h> 
#include <asm/uaccess.h>
#include "lddbus.h"

static dev_t devid;

static struct ldd_device ldd_dev = {
    .name = "myldd",	
    .dev = {		
        .init_name = "myldd",
    },
};

static int ldd_dev_init(void) {

    alloc_chrdev_region(&devid, 0, 1, "mylddtest");
    //ldd_dev.dev.devt = devid;
    register_ldd_device(&ldd_dev);
    return 0;
}

static void ldd_dev_exit(void) {
    unregister_ldd_device(&ldd_dev);
}

module_init(ldd_dev_init);
module_exit(ldd_dev_exit);
MODULE_LICENSE("GPL");

测试

[root@FriendlyARM myldd]#cd /sys/devices
[root@FriendlyARM devices] ls
1dd0 platform system virtual
[root@FriendlyARM devices] cd ldd0
[root@FriendlyARM lddo]# ls
myldd uevent
[root@FriendlyARM lddo] cd myldd
[root@FriendlyARM myldd] ls
driver subsystm uevent
[root@FriendlyARM myldd] ls -l
lrwxrwXrwx1 rootroot      0 Dec 3 01:37 driver   -> ../../../bus /ldd/drivers/myldd
lrwXrwXrwX1 rootroot      0 Dec 301:37 subsystem -> ../../..7bus/ldd
-rw-r——r--1 root_root 4096 Dec 301:37 uevent
[root@FriendlyARM myldd]cd /sys/bus/ldd/devices/
[root@FriendlyARM devices]ls
myldd
[root@FriendlyARM devices]# ls -l
lrwxrwXrwx1 rootroot
0 Dec3 01:40 myldd -> ../../../ devices/ldd0/myldd
[root@FriendlyARM devices] cd myldd
[root@FriendlyARM myldd]# ls
driver subsystem uevent
[root@FriendlyARM myldd]# cd driver
[root@FriendlyARM myldd]# ls
bind myldd uevent unbind  version
[root@FriendlyARM myldd] #cat version
' version 1.0

device 相对driver 要复杂一些,insmod dev.ko 之后,我们可以在/sys/devices 目录下看到新增了一个目录 ldd0(ldd_bus) ,在 ldd0 (ldd_bus)目录下看到我们向ldd总线注册的myldd设备(ldd0是 myldd 的父设备),在/sys/bus/ldd/devices/ 目录下同样可以看到 myldd , 因为这里的Myldd 是指向 /sys/devices/ldd0/myldd 的软连接。

/sys/devices/ldd0/myldd/driver 目录 与该设备匹配的驱动程序,我们在Bus->match中设置的匹配条件--名字相同。

我们并未看到属性文件 dev ,是因为我们没有指定Myldd设备的设备号,将 dev.c 代码中的 ldd_dev.dev.devt = devid 注释去掉,卸载原来驱动,重新加载。

[root@FriendlyARM myldd]#cd /sys/devices/ldd0/myldd
[root@FriendlyARM myldd]#ls 
dev driver subsystem uevent
[root@FriendlyARM myldd]#cd /sys/bus/ldd/devices/myldd/
[root@FriendlyARM myldd]#ls 
dev driver subsystem uevent
[root@FriendlyARM myldd]#cat dev
253:0
[root@FriendlyARM myldd]#ls -l /dev/my*
crw-rw---- 1 root root 253,   0 Dec 3 02:05 /dev/myldd

总结

无论是bus,还是class,还是我们会在后面看到的一些虚拟的子系统,它都构成了一个“子系统(sub-system)”;该子系统会包含形形色色的device或device_driver,就像一个独立的王国一样,存在于内核中。

而这些子系统的表现形式,就是/sys/bus(或/sys/class,或其它)目录下面的子目录,每一个子目录,都是一个子系统(如/sys/bus/spi/)。

附录:subsys_private的演化

参考:https://www.cnblogs.com/xinghuo123/p/12872026.html

按理说,subsys_private就是集合了一些bus模块需要使用的私有数据,例如ksetklist等等,命名为bus_private会好点(就像device、driver模块一样)

// drivers/base/base.h
/**
 * struct subsys_private - structure to hold the private to the driver core portions of the bus_type/class structure.
 *
 * @subsys - the struct kset that defines this subsystem
 * @devices_kset - the list of devices associated
 *
 * @drivers_kset - the list of drivers associated
 * @klist_devices - the klist to iterate over the @devices_kset
 * @klist_drivers - the klist to iterate over the @drivers_kset
 * @bus_notifier - the bus notifier list for anything that cares about things
 *                 on this bus.
 * @bus - pointer back to the struct bus_type that this structure is associated
 *        with.
 *
 * @class_interfaces - list of class_interfaces associated
 * @glue_dirs - "glue" directory to put in-between the parent device to
 *              avoid namespace conflicts
 * @class_mutex - mutex to protect the children, devices, and interfaces lists.
 * @class - pointer back to the struct class that this structure is associated
 *          with.
 *
 * This structure is the one that is the actual kobject allowing struct
 * bus_type/class to be statically allocated safely.  Nothing outside of the
 * driver core should ever touch these fields.
 */
struct subsys_private {
    struct kset subsys; //代表bus在sysfs中的类型
    struct kset *devices_kset; //代表bus目录下的drivers子目录
    // ...

    struct kset *drivers_kset;  //代表bus目录下地devices子目录
    struct klist klist_devices; //bus的设备链表
    struct klist klist_drivers; //bus的驱动链表
    struct blocking_notifier_head bus_notifier; //用于在总线上内容发送变化时调用特定的函数
    
    // 标志定义是否允许device和driver自动匹配,
    // 如果允许会在device或者driver注册时就进行匹配工作,默认是1
    unsigned int drivers_autoprobe:1;

    struct bus_type *bus;

    struct list_head class_interfaces;
    struct kset glue_dirs;
    struct mutex class_mutex;
    struct class *class; // 指向关联的bus_type类型。
};

早期版本

事实上,早期版本确实是命名为bus_type_private。那个时候,class 的私有数据与 bus的私有数据是分开的,分别是class_privatebus_type_private

linux 2.6.35.7

struct class_private {
    struct kset class_subsys;
    struct klist class_devices;
    struct list_head class_interfaces;
    struct kset class_dirs;
    struct mutex class_mutex;
    struct class *class;
};

struct bus_type_private {
    struct kset subsys;
    struct kset *drivers_kset;
    struct kset *devices_kset;
    struct klist klist_devices;
    struct klist klist_drivers;
    struct blocking_notifier_head bus_notifier;
    unsigned int drivers_autoprobe:1;
    struct bus_type *bus;
};

linux 3.x早期

bus因为需求升级为subsys_private ,同时为后面去掉class_private 做基础

struct subsys_private {
    struct kset subsys;
    struct kset *devices_kset;
    struct list_head interfaces;
    struct mutex mutex;
    struct kset *drivers_kset;
    struct klist klist_devices;
    struct klist klist_drivers;
    struct blocking_notifier_head bus_notifier;
    unsigned int drivers_autoprobe:1;
    struct bus_type *bus;
    struct kset glue_dirs;
    struct class *class;
};
struct class_private {
    struct kset class_subsys;
    struct klist class_devices;
    struct list_head class_interfaces;
    struct kset class_dirs;
    struct mutex class_mutex;
    struct class *class;
};

linux 3.x后期

两者完全统一用这个,class_private 在这个版本已经完全看不到了

struct subsys_private {
    struct kset subsys;
    struct kset *devices_kset;
    struct list_head interfaces;
    struct mutex mutex;
    struct kset *drivers_kset;
    struct klist klist_devices;
    struct klist klist_drivers;
    struct blocking_notifier_head bus_notifier;
    unsigned int drivers_autoprobe:1;
    struct bus_type *bus; //
    struct kset glue_dirs;
    struct class *class; //
};

附录:在bus中理解kobject的生命周期管理

回到kobject_put(),它通常被具体对象做一个简单包装,如:bus_put(),它直接调用kset_put(),然后调用到kobject_put()

// driver/base/bus.c
static void bus_put(struct bus_type *bus)
{
    if (bus)
        kset_put(&bus->p->subsys);
}

那对于这个bus_type对象而言,仅仅通过kobject_put(),如何来达到释放整个bus_type的目的呢?

这里就需要kobject另一个成员struct kobj_type * ktype来完成。

回到kobject_put()release()操作。当引用计数为0时,kobject核心会调用kobject_release(),最后会调用kobj_type->release(kobj)来完成对象的释放。可是具体对象的释放,最后却通过kobj->kobj_type->release()来释放,那这个release()函数,就必须得由具体的对象来指定。

还是拿bus_type举例:

在通过bus_register(struct bus_type *bus)进行总线注册时,该API内部会执行priv->subsys.kobj.ktype = &bus_ktype操作;

// driver/base/bus.c
int bus_register(struct bus_type *bus)
{
    // ...
    
    priv->subsys.kobj.ktype = &bus_ktype;
    
    // ...
}

有了该操作,那么前面的bus_put()在执行bus_type->p-> subsys.kobj->ktype->release()时,就会执行注册的bus_ktype.release = bus_release函数。

// driver/base/bus.c
static struct kobj_type bus_ktype = {
    .sysfs_ops  = &bus_sysfs_ops,
    .release    = bus_release,
};

static void bus_release(struct kobject *kobj)
{
    // 获取整个 具体的 bus子系统 对象
    struct subsys_private *priv =
        container_of(kobj, typeof(*priv), subsys.kobj);
    struct bus_type *bus = priv->bus;

    // 释放资源
    kfree(priv);
    bus->p = NULL;
}

由于bus_release()函数由具体的bus子系统提供,它必定知道如何释放包括kobj在内的bus_type对象。

posted @ 2021-06-18 19:09  schips  阅读(5875)  评论(0编辑  收藏  举报