Tensorflow 将训练模型保存为pd文件
前言
保存 模型有2种方法。
方法
1.使用TensorFlow模型保存函数
save = tf.train.Saver()
......
saver.save(sess,"checkpoint/model.ckpt",global_step=step)*
得到3个结果
model.ckpt-129220.data-00000-of-00001#保存了模型的所有变量的值。
model.ckpt-129220.index
model.ckpt-129220.meta # 保存了graph结构,包括GraphDef, SaverDef等。存在时,可以不在文件中定义模型,也可以运行
再将这3个文件保存为.pd文件
import tensorflow as tf
import deeplab_model
def export_graph(model, checkpoint_dir, model_name):
...
model: the defined model
checkpoint_dir: the dir of three files
model_name: the name of .pb
...
graph = tf.Graph()
with graph.as_default():
### 输入占位符
input_img = tf.placeholder(tf.float32, shape=[None, None, None, 3], name='input_image')
labels = tf.zeros([1, 512, 512,1])
labels = tf.to_int32(tf.image.convert_image_dtype(labels, dtype=tf.uint8))
### 需要输出的Tensor
output = model.deeplabv3_plus_model_fn(
input_img,
labels,
tf.estimator.ModeKeys.EVAL,
params={
'output_stride': 16,
'batch_size': 1, # Batch size must be 1 because the images' size may differ
'base_architecture': 'resnet_v2_50',
'pre_trained_model': None,
'batch_norm_decay': None,
'num_classes': 2,
'freeze_batch_norm': True
}).predictions['classes']
### 给输出的tensor命名
output = tf.identity(output, name='output_label')
restore_saver = tf.train.Saver()
with tf.Session(graph=graph) as sess:
### 初始化变量
sess.run(tf.global_variables_initializer())
### load the model
restore_saver.restore(sess, checkpoint_dir)
output_graph_def = tf.graph_util.convert_variables_to_constants(
sess, graph.as_graph_def(), [output.op.name])
### 将图写成.pb文件
tf.train.write_graph(output_graph_def, 'pretrained', model_name, as_text=False)
### 调用函数,生成.pd文件
export_graph(deeplab_model, 'model/model.ckpt-133958', 'model.pd')
### 读取
import tensorflow as tf
import os
def inference():
with tf.gfile.FastGFile('pretrained/model.pd', 'rb') as model_file:
graph = tf.Graph()
graph_def = tf.GraphDef()
graph_def.ParseFromString(model_file.read())
[output_image] = tf.import_graph_def(graph_def,
input_map={'input_image': images},
return_elements=['output_label:0'],
name='output')
sess = tf.Session()
label = sess.run(output_image)
return label
labels = inference()
2.直接保存
import tensorflow as tf
from tensorflow.python.framework import graph_util
var1 = tf.Variable(1.0, dtype=tf.float32, name='v1')
var2 = tf.Variable(2.0, dtype=tf.float32, name='v2')
var3 = tf.Variable(2.0, dtype=tf.float32, name='v3')
x = tf.placeholder(dtype=tf.float32, shape=None, name='x')
x2 = tf.placeholder(dtype=tf.float32, shape=None, name='x2')
addop = tf.add(x, x2, name='add')
addop2 = tf.add(var1, var2, name='add2')
addop3 = tf.add(var3, var2, name='add3')
initop = tf.global_variables_initializer()
model_path = './Test/model.pb'
with tf.Session() as sess:
sess.run(initop)
print(sess.run(addop, feed_dict={x: 12, x2: 23}))
output_graph_def = graph_util.convert_variables_to_constants(sess, sess.graph_def, ['add', 'add2', 'add3'])
# 将计算图写入到模型文件中
model_f = tf.gfile.FastGFile(model_path, mode="wb")
model_f.write(output_graph_def.SerializeToString())
####读取代码:
import tensorflow as tf
with tf.Session() as sess:
model_f = tf.gfile.FastGFile("./Test/model.pb", mode='rb')
graph_def = tf.GraphDef()
graph_def.ParseFromString(model_f.read())
c = tf.import_graph_def(graph_def, return_elements=["add2:0"])
c2 = tf.import_graph_def(graph_def, return_elements=["add3:0"])
x, x2, c3 = tf.import_graph_def(graph_def, return_elements=["x:0", "x2:0", "add:0"])
print(sess.run(c))
print(sess.run(c2))
print(sess.run(c3, feed_dict={x: 23, x2: 2}))
如果说我的文章对你有用,只不过是我站在巨人的肩膀上再继续努力罢了。
若在页首无特别声明,本篇文章由 Schips 经过整理后发布。
博客地址:https://www.cnblogs.com/schips/
若在页首无特别声明,本篇文章由 Schips 经过整理后发布。
博客地址:https://www.cnblogs.com/schips/