2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018) D. Delivery Delays (二分+最短路+DP)

题目链接:https://codeforc.es/gym/101933/problem/D

题意:地图上有 n 个位置和 m 条边,每条边连接 u、v 且有一个距离 w,一共有 k 个询问,每个询问表示 ti 时间在位置 ui 有人下单点了披萨,而披萨店在 di 时间做好披萨可以送出去,披萨店在位置 1,送披萨必须按顺序送,问客人从下单到拿到披萨的最长等待时间最短是多少。

题解:首先可以对每个点跑一次 dij,预处理出每两点之间的最短路,然后考虑二分答案,判断是否合法。dp[i][j]代表已经送完前 i 个位置,且拿了前 j 个位置的披萨的最小时间,还需要一维 k,0 表示送完以后当前在第 i 个点披萨的位置,1 表示当前在披萨店,然后进行转移即可。

 

  1 #include <bits/stdc++.h>
  2 #define sd(a) scanf("%d",&a)
  3 #define mst(a,b) memset(a,b,sizeof a)
  4 #define mp make_pair
  5 typedef long long ll;
  6 #define pb push_back
  7 using namespace std;
  8 typedef pair<int, int> pii;
  9 const int maxn = 2e5 + 10;
 10 //int inf = 0x3f3f3f3f;
 11 const int mod = 1000000007;
 12 ll dis[1111][1111];
 13 vector<pii>g[1111];
 14 bool vis[1111];
 15 void dij(int s, int n) {
 16     ll inf2 = 1e16;
 17     for(int i = 1; i <= n; ++i)
 18         dis[s][i] = inf2, vis[i] = 0;
 19     dis[s][s] = 0;
 20     priority_queue<pair<ll, int> >q;
 21     q.push(mp(0, s));
 22     for(; !q.empty();) {
 23         int u = q.top().second;
 24         q.pop();
 25         if(vis[u])
 26             continue;
 27         vis[u] = 1;
 28         for(int j = 0, sz = g[u].size(); j < sz; ++j) {
 29             int v = g[u][j].first;
 30             int w = g[u][j].second;
 31             if(dis[s][v] > dis[s][u] + w) {
 32                 dis[s][v] = dis[s][u] + w;
 33                 q.push(mp(-dis[s][v], v));
 34             }
 35         }
 36     }
 37 }
 38 int s[1111], to[1111], t[1111];
 39 ll dp[1111][1111][2];
 40 bool check(ll x, int n, int k) {
 41     ll inf2 = 1e16;
 42     for(int i = 0; i <= k; ++i)
 43         for(int j = 0; j <= k; ++j)
 44             dp[i][j][0] = dp[i][j][1] = inf2;
 45     dp[0][0][1] = 0;
 46     for(int i = 0; i < k; ++i) {
 47         for(int j = i; j <= k; ++j) {
 48             for(int o = 0; o < 2; ++o) {
 49                 if(dp[i][j][o] == inf2)
 50                     continue;
 51                 if(!o) {
 52                     dp[i][j][1] = min(dp[i][j][1], dp[i][j][0] + dis[to[i]][1]);
 53                     if(j > i && i < k) {
 54                         ll time = dp[i][j][0] + dis[to[i]][to[i + 1]];
 55                         if(s[i + 1] + x >= time)
 56                             dp[i + 1][j][0] = min(dp[i + 1][j][0], time);
 57                     }
 58                 } else {
 59                     if(j < k)
 60                         dp[i][j + 1][1] = min(dp[i][j + 1][1], max(dp[i][j][1], (ll)t[j + 1]) );
 61                     if(i < k && j >= i + 1) {
 62                         ll time = dp[i][j][1] + dis[1][to[i + 1]];
 63                         if(s[i + 1] + x >= time)
 64                             dp[i + 1][j][0] = min(dp[i + 1][j][0], time);
 65                     }
 66                 }
 67             }
 68         }
 69     }
 70     return dp[k][k][0] != inf2;
 71 }
 72 
 73 int main() {
 74 #ifdef local
 75     freopen("in", "r", stdin);
 76 #endif // local
 77     int n, m;
 78     sd(n), sd(m);
 79     for(int i = 1; i <= m; ++i) {
 80         int u, v, w;
 81         sd(u), sd(v), sd(w);
 82         g[u].pb(mp(v, w));
 83         g[v].pb(mp(u, w));
 84     }
 85     int k;
 86     sd(k);
 87     to[0] = 1;
 88     for(int i = 1; i <= k; ++i)
 89         sd(s[i]), sd(to[i]), sd(t[i]);
 90     for(int i = 1; i <= n; ++i)
 91         dij(i, n);
 92     ll ans = 1e16;
 93     ll l = 0, r = ans;
 94     for(; l <= r;) {
 95         ll mid = (l + r) >> 1;
 96         if(check(mid, n, k))
 97             ans = mid, r = mid - 1;
 98         else
 99             l = mid + 1;
100     }
101     printf("%lld\n", ans);
102     return 0;
103 }

 

posted on 2018-11-03 11:10  scau_lok  阅读(514)  评论(0编辑  收藏  举报

导航