2018多校第十场 HDU 6430 (线段树合并)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6430
题意:一棵树上每个节点权值为v[i],每个节点的heard值是:以它为LCA的两个节点的GCD的最大值,要求输出每个节点的heard值。
题解:权值范围是[1, 1e5],1e5内数因子最多不超过200个,对每个点建一颗线段树,维护每个点的因子,dfs过程中由下往上合并线段树并更新答案。
1 #include <bits/stdc++.h> 2 using namespace std; 3 #define ll long long 4 #define ull unsigned long long 5 #define mst(a,b) memset((a),(b),sizeof(a)) 6 #define mp(a,b) make_pair(a,b) 7 #define fi first 8 #define se second 9 #define pi acos(-1) 10 #define pii pair<int,int> 11 #define pb push_back 12 const int INF = 0x3f3f3f3f; 13 const double eps = 1e-6; 14 const int MAXN = 1e5 + 10; 15 const int MAXM = 2e6 + 10; 16 const ll mod = 1e9 + 7; 17 18 vector<int>yz[MAXN],vec[MAXN]; 19 20 void init() { 21 for(int i = 1; i < MAXN; i++) { 22 for(int j = 1; j <= sqrt(i); j++) { 23 if(i % j == 0) { 24 yz[i].pb(j); 25 if(j != i / j) yz[i].push_back(i / j); 26 } 27 } 28 } 29 } 30 31 int root[MAXN]; 32 int ls[MAXN * 400], rs[MAXN * 400], st[MAXN * 400]; 33 int cnt = 0; 34 35 void pushup(int o) { 36 st[o] = max(st[ls[o]], st[rs[o]]); 37 } 38 39 void update(int k,int l,int r,int &o) { 40 if(!o) o = ++cnt; 41 if(l == r) { 42 st[o] = k; 43 return ; 44 } 45 int mid = (l + r) >> 1; 46 if(k <= mid) update(k, l, mid, ls[o]); 47 else update(k, mid + 1, r, rs[o]); 48 pushup(o); 49 } 50 51 int mergee(int fa,int u,int &ans) { 52 if(!fa || !u) return fa | u; 53 if(st[fa] == st[u]) ans = max(ans, st[fa]); 54 if(ls[fa] || ls[u]) ls[fa] = mergee(ls[fa], ls[u], ans); 55 if(rs[fa] || rs[u]) rs[fa] = mergee(rs[fa], rs[u], ans); 56 return fa; 57 } 58 59 int ans[MAXN]; 60 61 void dfs(int u) { 62 for(int i = 0; i < vec[u].size(); i++) { 63 int v = vec[u][i]; 64 dfs(v); 65 mergee(root[u], root[v], ans[u]); 66 } 67 } 68 69 int main() { 70 #ifdef local 71 freopen("data.txt", "r", stdin); 72 // freopen("data.txt", "w", stdout); 73 #endif 74 init(); 75 int n; 76 scanf("%d",&n); 77 for(int i = 2; i <= n; i++) { 78 int f; 79 scanf("%d",&f); 80 vec[f].push_back(i); 81 } 82 for(int i = 1; i <= n; i++) { 83 int x; 84 scanf("%d",&x); 85 for(int j = 0; j < yz[x].size(); j++) 86 update(yz[x][j], 1, 1e5, root[i]); 87 } 88 mst(ans, -1); 89 dfs(1); 90 for(int i = 1; i <= n; i++) 91 printf("%d\n",ans[i]); 92 return 0; 93 }