XOR and Favorite Number(莫队算法)
Bob has a favorite number k and ai of length n. Now he asks you to answer m queries. Each query is given by a pair li and ri and asks you to count the number of pairs of integers i and j, such that l ≤ i ≤ j ≤ r and the xor of the numbers ai, ai + 1, ..., aj is equal to k.
The first line of the input contains integers n, m and k (1 ≤ n, m ≤ 100 000, 0 ≤ k ≤ 1 000 000) — the length of the array, the number of queries and Bob's favorite number respectively.
The second line contains n integers ai (0 ≤ ai ≤ 1 000 000) — Bob's array.
Then m lines follow. The i-th line contains integers li and ri (1 ≤ li ≤ ri ≤ n) — the parameters of the i-th query.
Print m lines, answer the queries in the order they appear in the input.
6 2 3
1 2 1 1 0 3
1 6
3 5
7
0
5 3 1
1 1 1 1 1
1 5
2 4
1 3
9
4
4
In the first sample the suitable pairs of i and j for the first query are: (1, 2), (1, 4), (1, 5), (2, 3), (3, 6), (5, 6), (6, 6). Not a single of these pairs is suitable for the second query.
In the second sample xor equals 1 for all subarrays of an odd length.
题意:给你一个大小为n的序列,然后给你一个数字k,再给出m组询问
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <vector> #include <queue> #include <stack> #include <map> #include <set> #define X first #define Y second #define clr(u,v); memset(u,v,sizeof(u)); using namespace std; typedef long long ll; typedef pair<int,int> pii; const int maxn=1<<20; const int INF=0x3f3f3f3f; ll pos[maxn]; ll flag[maxn],ans[maxn]; int a[maxn]; struct node { int l,r,id; }Q[maxn]; bool cmp(node a,node b) { if (pos[a.l]==pos[b.l]) { return a.r<b.r; } return pos[a.l]<pos[b.l]; } int n,m,k; int L=1,R=0; ll Ans=0; void add(int x) { Ans+=flag[a[x]^k]; flag[a[x]]++; } void del(int x) { flag[a[x]]--; Ans-=flag[a[x]^k]; } int main() { scanf("%d%d%d",&n,&m,&k); int sz=sqrt(n); for (int i=1;i<=n;i++) { scanf("%d",&a[i]); a[i]^=a[i-1]; pos[i]=i/sz; } for (int i=1;i<=m;i++) { scanf("%d%d",&Q[i].l,&Q[i].r); Q[i].id=i; } flag[0]=1; sort(Q+1,Q+m+1,cmp); for (int i=1;i<=m;i++) { while (L<Q[i].l) { del(L-1); L++; } while (L>Q[i].l) { L--; add(L-1); } while (R<Q[i].r) { R++; add(R); } while (R>Q[i].r) { del(R); R--; } ans[Q[i].id]=Ans; } for (int i=1;i<=m;i++) printf("%I64d\n",ans[i]); return 0; }
2016-09-25 03:31:38