学习LangChain参考
https://python.langchain.com.cn/docs/get_started/quickstart
https://python.langchain.com/v0.1/docs/integrations/llms/ollama/
https://wangwei1237.github.io/LLM_in_Action/rag_intro.html
https://api.python.langchain.com/en/latest/chat_models/langchain_community.chat_models.openai.ChatOpenAI.html
https://learnprompting.org/zh-Hans/docs/basics/formalizing
https://zhuanlan.zhihu.com/p/613698929
调用本地下载的模型参考
https://blog.csdn.net/qq_43692950/article/details/131743987
在Jupyter Notebook中试验的代码(注意Jupyter不会释放GPU显存)
from langchain import PromptTemplate, LLMChain import torch from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer from transformers import AutoModel, pipeline from langchain import HuggingFacePipeline from langchain import PromptTemplate model_path = "E:\\work\\AI\\GPT\\llama_model_4bit" if torch.cuda.is_available(): print(torch.cuda.device_count()) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(device) else: print('没有GPU') tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) if model_path.endswith("4bit"): model = AutoModelForCausalLM.from_pretrained( model_path, load_in_4bit=True, torch_dtype=torch.float16, device_map='auto' ) elif model_path.endswith("8bit"): model = AutoModelForCausalLM.from_pretrained( model_path, load_in_8bit=True, torch_dtype=torch.float16, device_map='auto' ) else: model = AutoModelForCausalLM.from_pretrained(model_path).half().cuda() pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_length=512, top_p=1, repetition_penalty=1.15 ) llama_model = HuggingFacePipeline(pipeline=pipe) template = ''' #context# You are a good helpful, respectful and honest assistant.You are ready for answering human's question and always answer as helpfully as possible, while being safe. Please ensure that your responses are socially unbiased and positive in nature. #question# Human:What is a good name for a company that makes {product}?" ''' prompt = PromptTemplate( input_variables=["product"], template=template ) chain = LLMChain(llm=llama_model, prompt=prompt) chain.run("running shoes")
'#answer# \nA great name for a shoe-making company could be "Sprint" or "Runners Edge". These names convey speed and agility, which are important qualities for a running shoe brand to have. Additionally, they are easy to remember and pronounce, making them ideal for marketing purposes. '
标签:
大模型
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律