Omkar and Last Class of Math
Omkar, having a laudably curious mind, immediately thought of a problem involving the LCMLCM operation: given an integer nn, find positive integers aa and bb such that a+b=na+b=n and LCM(a,b)LCM(a,b) is the minimum value possible.
Can you help Omkar solve his ludicrously challenging math problem?
Each test contains multiple test cases. The first line contains the number of test cases tt (1≤t≤101≤t≤10). Description of the test cases follows.
Each test case consists of a single integer nn (2≤n≤1092≤n≤109).
For each test case, output two positive integers aa and bb, such that a+b=na+b=n and LCM(a,b)LCM(a,b) is the minimum possible.
3 4 6 9
2 2 3 3 3 6
For the first test case, the numbers we can choose are 1,31,3 or 2,22,2. LCM(1,3)=3LCM(1,3)=3 and LCM(2,2)=2LCM(2,2)=2, so we output 2 22 2.
For the second test case, the numbers we can choose are 1,51,5, 2,42,4, or 3,33,3. LCM(1,5)=5LCM(1,5)=5, LCM(2,4)=4LCM(2,4)=4, and LCM(3,3)=3LCM(3,3)=3, so we output 3 33 3.
For the third test case, LCM(3,6)=6LCM(3,6)=6. It can be shown that there are no other pairs of numbers which sum to 99 that have a lower LCMLCM.
题目大意:
给你一个n,找到两个a,b,使a+b=n,并且lcm(a,b)尽可能小。
1 #include<bits/stdc++.h> 2 using namespace std; 3 int t,x; 4 bool prim(int x) { 5 if(x==2) 6 return true; 7 if(x<=1) 8 return false; 9 for(int i=2; i*i<=x; i++) 10 if(x%i==0) 11 return false; 12 return true; 13 } 14 int gcd(int x) { 15 int ans=-1; 16 for(int i=2; i<x; i++) 17 if(x%i==0) 18 { 19 ans=i; 20 break; 21 } 22 ans=x/ans; 23 return ans; 24 } 25 int main() { 26 scanf("%d",&t); 27 while(t--) { 28 scanf("%d",&x); 29 if(x%2==0) 30 printf("%d %d\n",x/2,x/2); 31 else { 32 if(prim(x)) 33 cout<<1<<" "<<x-1<<endl; 34 else 35 printf("%d %d\n",gcd(x),x-gcd(x)); 36 } 37 } 38 return 0; 39 }
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步