LeetCode #279 Perfect Squares

Question

Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...) which sum to n.

Example 1:

Input: n = 12
Output: 3 
Explanation: 12 = 4 + 4 + 4.

Example 2:

Input: n = 13
Output: 2
Explanation: 13 = 4 + 9.

方法一:动态规划

time complexity:O(n^2)

很容易想到动态规划的方法,先求出1, 2, 3, ..., n-1的最小平方数个数值,再求出n的最小平方数个数值。动态转移方程为:

f(i) = min([ f[k]+f[i-k] for k in range(1, i)] )

class Solution:
    def numSquares(self, n: int) -> int:
        import math
        f = [0]
        f.append(1)
        for i in range(2, n+1):
            if i == int((math.sqrt(i))) ** 2:
                f.append(1)
            else:
                f.append(min([f[k]+f[i-k] for k in range(1, i)]))
        return f[n]

TLE,时间复杂度太高,502 / 588 test cases passed.

方法二:动态规划,开方剪枝

time complexity:O(n*sqrt(n))

方法一的大体思路不错,但由于枚举了1, 2, 3, ..., i-1所有的值,导致此步用了O(n),但其实没必要枚举1, 2, 3, ..., i-1之间配对的值,只需要枚举完全平方数就行了,所以可以改进为只对完全平方数进行枚举。

class Solution:
    def numSquares(self, n: int) -> int:
        f = [n] * (n+1)
        f[0] = 0
        f[1] = 1
        for i in range(2, n+1):
            j = 1
            while j*j <= i:
                f[i] = min(f[i], f[i-j*j]+1)
                j+=1
        return f[-1]

目测还是会超时

方法三:BFS

time complexity:O(sqrt(n) ^ k) (k平均情况不确定,由方法四可知,最坏情况是4)

以13为例:

class Solution:
    def numSquares(self, n: int) -> int:
        record = [(n,0)]
        for num, level in record:
            if num == 0: return level
            i = 1
            while i*i <= num:
                record.append((num-i*i, level+1))
                i += 1

用此最简单直接的BFS, 相当于把所有可能全部存在record里了,没有及时清理没有用的内存,此题导致MLE(Memory Limit Exceeded)了

 1 class Solution:
 2     def numSquares(self, n: int) -> int:
 3         import math
 4         
 5         level = 0
 6         front, end = set([n]), set([0])
 7         while front:
 8             if front & end: return level
 9             front = set([num-i*i for num in front for i in range(1, int(math.sqrt(num))+1)])
10             level += 1

此方法为上面BFS的改进,level只需要用一个变量存,因为BFS中level递增。值得一提的是front和end,即搜索的当前状态和终止状态,一旦两种有交集,代表当前到了终止状态,其采用了set而不用list,可以减少重复情况带来的重复计算。

从语言技巧的角度,可以注意第9行front更新语句的写法,简洁、方便、易读。

方法四:四平方和定理

time complexity:

 

 

 

参考:

https://blog.csdn.net/qq_39445165/article/details/89479142

https://blog.csdn.net/qq_17550379/article/details/80875782

posted @ 2019-07-30 18:21  sbj123456789  阅读(133)  评论(0编辑  收藏  举报