[LeetCode]: 53: Maximum Subarray

题目:

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.

click to show more practice.

More practice:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

 

分析:

- 采用动态规划思想

计算前n项中最大的和,对于新加如的n+1项,其结果可能有如下情况

    n=0:对最大和没有帮助

   单独的A[n+1]

    以max_subarray(A[n])和A[n+1]以及两者之间的元素组合起来生成的数组。

其中,如果在增长过程中,现有的数组段的和是负数,马上就可以抛弃,因为在这种情况下,max_subarray要是包含这一段,值肯定会比不包括这一段要大。

 

代码:

    public static int maxSubArray(int[] nums) {
        int intResult  = nums[0];
        int intCurrentSum  = nums[0];
        for(int i =1;i<nums.length;i++){
            if(intCurrentSum < 0){
                intCurrentSum = nums[i];
            }
            else{
                intCurrentSum = intCurrentSum + nums[i];
            }
            
            if(intCurrentSum>intResult ){
                intResult = intCurrentSum;
            }
        }
         
        return intResult;
    }

 

 

posted @ 2015-10-08 12:10  savageclc26  阅读(103)  评论(0编辑  收藏  举报