动态规划系列(零)—— 动态规划(Dynamic Programming)总结
动态规划三要素:重叠⼦问题、最优⼦结构、状态转移⽅程。
动态规划的三个需要明确的点就是「状态」「选择」和「base case」,对应着回溯算法中走过的「路径」,当前的「选择列表」和「结束条件」。
某种程度上说,动态规划的暴力求解阶段就是回溯算法。只是有的问题具有重叠子问题性质,可以用 dp table 或者备忘录优化,将递归树大幅剪枝,这就变成了动态规划。
方法: 状态表示 ->写出状态转移方程 ->确定边界 ->如果用递推,考虑子状态枚举的顺序
最优子结构详解
「最优子结构」是某些问题的一种特定性质,并不是动态规划问题专有的。也就是说,很多问题其实都具有最优子结构,只是其中大部分不具有重叠子问题,所以我们不把它们归为动态规划系列问题而已。
我先举个很容易理解的例子:假设你们学校有 10 个班,你已经计算出了每个班的最高考试成绩。那么现在我要求你计算全校最高的成绩,你会不会算?当然会,而且你不用重新遍历全校学生的分数进行比较,而是只要在这 10 个最高成绩中取最大的就是全校的最高成绩。
我给你提出的这个问题就符合最优子结构:可以从子问题的最优结果推出更大规模问题的最优结果。让你算每个班的最优成绩就是子问题,你知道所有子问题的答案后,就可以借此推出全校学生的最优成绩这个规模更大的问题的答案。
你看,这么简单的问题都有最优子结构性质,只是因为显然没有重叠子问题,所以我们简单地求最值肯定用不出动态规划。
再举个例子:假设你们学校有 10 个班,你已知每个班的最大分数差(最高分和最低分的差值)。那么现在我让你计算全校学生中的最大分数差,你会不会算?可以想办法算,但是肯定不能通过已知的这 10 个班的最大分数差推到出来。因为这 10 个班的最大分数差不一定就包含全校学生的最大分数差,比如全校的最大分数差可能是 3 班的最高分和 6 班的最低分之差。
这次我给你提出的问题就不符合最优子结构,因为你没办通过每个班的最优值推出全校的最优值,没办法通过子问题的最优值推出规模更大的问题的最优值。前文 动态规划详解 说过,想满足最优子结,子问题之间必须互相独立。全校的最大分数差可能出现在两个班之间,显然子问题不独立,所以这个问题本身不符合最优子结构。
那么遇到这种最优子结构失效情况,怎么办?策略是:改造问题。对于最大分数差这个问题,我们不是没办法利用已知的每个班的分数差吗,那我只能这样写一段暴力代码:
int result = 0;
for (Student a : school) {
for (Student b : school) {
if (a is b) continue;
result = max(result, |a.score - b.score|);
}
}
return result;
改造问题,也就是把问题等价转化:最大分数差,不就等价于最高分数和最低分数的差么,那不就是要求最高和最低分数么,不就是我们讨论的第一个问题么,不就具有最优子结构了么?那现在改变思路,借助最优子结构解决最值问题,再回过头解决最大分数差问题,是不是就高效多了?
当然,上面这个例子太简单了,不过请读者回顾一下,我们做动态规划问题,是不是一直在求各种最值,本质跟我们举的例子没啥区别,无非需要处理一下重叠子问题。
前文 动态规划:不同的定义产生不同的解法 和 经典动态规划:高楼扔鸡蛋(进阶篇) 就展示了如何改造问题,不同的最优子结构,可能导致不同的解法和效率。
再举个常见但也十分简单的例子,求一棵二叉树的最大值,不难吧(简单起见,假设节点中的值都是非负数):
int maxVal(TreeNode root) {
if (root == null)
return -1;
int left = maxVal(root.left);
int right = maxVal(root.right);
return max(root.val, left, right);
}
你看这个问题也符合最优子结构,以root
为根的树的最大值,可以通过两边子树(子问题)的最大值推导出来,结合刚才学校和班级的例子,很容易理解吧。
当然这也不是动态规划问题,旨在说明,最优子结构并不是动态规划独有的一种性质,能求最值的问题大部分都具有这个性质;但反过来,最优子结构性质作为动态规划问题的必要条件,一定是让你求最值的,以后碰到那种恶心人的最值题,思路往动态规划想就对了,这就是套路。
动态规划不就是从最简单的 base case 往后推导吗,可以想象成一个链式反应,不断以小博大。但只有符合最优子结构的问题,才有发生这种链式反应的性质。
找最优子结构的过程,其实就是证明状态转移方程正确性的过程,方程符合最优子结构就可以写暴力解了,写出暴力解就可以看出有没有重叠子问题了,有则优化,无则 OK。这也是套路,经常刷题的朋友应该能体会。
这里就不举那些正宗动态规划的例子了,读者可以翻翻历史文章,看看状态转移是如何遵循最优子结构的,这个话题就聊到这,下面再来看另外个动态规划迷惑行为。
Dynamic Programming代码框架
记忆搜索格式:
int dp[状态]
int dfs(状态)
{
if(决策边界)
return 决策边界答案;
if(dp[状态表示]!=无效数值)
return dp[状态表示];
for(当前状态的子状态)
dfs(子状态);
更新dp[状态表示];
return dp[状态表示];
}
int solve()
{
memset(dp,无效数值,sizeof(dp));
return dfs(原问题状态);
}
dp 数组的遍历方向
我相信读者做动态规划问题时,肯定会对dp
数组的遍历顺序有些头疼。我们拿二维dp
数组来举例,有时候我们是正向遍历:
int[][] dp = new int[m][n];
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
// 计算 dp[i][j]
有时候我们反向遍历:
for (int i = m - 1; i >= 0; i--)
for (int j = n - 1; j >= 0; j--)
// 计算 dp[i][j]
有时候可能会斜向遍历:
// 斜着遍历数组,忽略对角线的 Base Case
for (int l = 1; l <= n-1; l++) {
for (int i = 0; i <= n - 1 - l; i++) {
int j = i+l;
// 计算 dp[i][j]
}
}
甚至更让人迷惑的是,有时候发现正向反向遍历都可以得到正确答案,比如我们在 团灭 LeetCode 股票买卖问题 中有的地方就正反皆可。
那么,如果仔细观察的话可以发现其中的原因的。你只要把住两点就行了:
1、遍历的过程中,所需的状态必须是已经计算出来的。
2、遍历的终点必须是存储结果的那个位置。
下面来具体解释上面两个原则是什么意思。
比如编辑距离这个经典的问题,详解见前文 经典动态规划:编辑距离,我们通过对dp
数组的定义,确定了 base case 是dp[..][0]
和dp[0][..]
,最终答案是dp[m][n]
;而且我们通过状态转移方程知道dp[i][j]
需要从dp[i-1][j]
,dp[i][j-1]
,dp[i-1][j-1]
转移而来,如下图:
那么,参考刚才说的两条原则,你该怎么遍历dp
数组?肯定是正向遍历:
for (int i = 1; i < m; i++)
for (int j = 1; j < n; j++)
// 通过 dp[i-1][j], dp[i][j - 1], dp[i-1][j-1]
// 计算 dp[i][j]
因为,这样每一步迭代的左边、上边、左上边的位置都是 base case 或者之前计算过的,而且最终结束在我们想要的答案dp[m][n]
。
再举一例,回文子序列问题,详见前文 子序列解题模板:最长回文子序列,我们通过过对dp
数组的定义,确定了 base case 处在中间的对角线,dp[i][j]
需要从dp[i+1][j]
,dp[i][j-1]
,dp[i+1][j-1]
转移而来,想要求的最终答案是dp[0][n-1]
,如下图:
这种情况根据刚才的两个原则,就可以有两种正确的遍历方式:
要么从左至右斜着遍历,要么从下向上从左到右遍历,这样才能保证每次dp[i][j]
的左边、下边、左下边已经计算完毕,最终得到正确结果。
现在,你应该理解了这两个原则,主要就是看 base case 和最终结果的存储位置,保证遍历过程中使用的数据都是计算完毕的就行,有时候确实存在多种方法可以得到正确答案,可根据个人口味自行选择。
状态压缩
能够使用状态压缩技巧的动态规划都是二维dp
问题,你看它的状态转移方程,如果计算状态dp[i][j]
需要的都是dp[i][j]
相邻的状态,那么就可以使用状态压缩技巧,将二维的dp
数组转化成一维,将空间复杂度从 O(N^2) 降低到 O(N)。
什么叫「和dp[i][j]
相邻的状态」呢,比如 「最长回文子序列」 最终的代码如下:
int longestPalindromeSubseq(string s) {
int n = s.size();
// dp 数组全部初始化为 0
vector<vector<int>> dp(n, vector<int>(n, 0));
// base case
for (int i = 0; i < n; i++)
dp[i][i] = 1;
// 反着遍历保证正确的状态转移
for (int i = n - 2; i >= 0; i--) {
for (int j = i + 1; j < n; j++) {
// 状态转移方程
if (s[i] == s[j])
dp[i][j] = dp[i + 1][j - 1] + 2;
else
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}
}
// 整个 s 的最长回文子串长度
return dp[0][n - 1];
}
PS:我们本文不探讨如何推状态转移方程,只探讨对二维 DP 问题进行状态压缩的技巧。技巧都是通用的,所以如果你没看过前文,不明白这段代码的逻辑也无妨,完全不会阻碍你学会状态压缩。
你看我们对dp[i][j]
的更新,其实只依赖于dp[i+1][j-1], dp[i][j-1], dp[i+1][j]
这三个状态:
这就叫和dp[i][j]
相邻,反正你计算dp[i][j]
只需要这三个相邻状态,其实根本不需要那么大一个二维的 dp table 对不对?
状态压缩的核心思路就是,将二维数组「投影」到一维数组:
思路很直观,但是也有一个明显的问题,图中dp[i][j-1]
和dp[i+1][j-1]
这两个状态处在同一列,而一维数组中只能容下一个,那么当我计算dp[i][j]
时,他俩必然有一个会被另一个覆盖掉,怎么办?
这就是状态压缩的难点,下面就来分析解决这个问题,还是拿「最长回文子序列」问题举例,它的状态转移方程主要逻辑就是如下这段代码:
for (int i = n - 2; i >= 0; i--) {
for (int j = i + 1; j < n; j++) {
// 状态转移方程
if (s[i] == s[j])
dp[i][j] = dp[i + 1][j - 1] + 2;
else
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}
}
想把二维dp
数组压缩成一维,一般来说是把第一个维度,也就是i
这个维度去掉,只剩下j
这个维度。压缩后的一维dp
数组就是之前二维dp
数组的dp[i][..]
那一行。
我们先将上述代码进行改造,直接无脑去掉i
这个维度,把dp
数组变成一维:
for (int i = n - 2; i >= 0; i--) {
for (int j = i + 1; j < n; j++) {
// 在这里,一维 dp 数组中的数是什么?
if (s[i] == s[j])
dp[j] = dp[j - 1] + 2;
else
dp[j] = max(dp[j], dp[j - 1]);
}
}
上述代码的一维dp
数组只能表示二维dp
数组的一行dp[i][..]
,那我怎么才能得到dp[i+1][j-1], dp[i][j-1], dp[i+1][j]
这几个必要的的值,进行状态转移呢?
在代码中注释的位置,将要进行状态转移,更新dp[j]
,那么我们要来思考两个问题:
1、在对dp[j]
赋新值之前,dp[j]
对应着二维dp
数组中的什么位置?
2、dp[j-1]
对应着二维dp
数组中的什么位置?
对于问题 1,在对dp[j]
赋新值之前,dp[j]
的值就是外层 for 循环上一次迭代算出来的值,也就是对应二维dp
数组中dp[i+1][j]
的位置。
对于问题 2,dp[j-1]
的值就是内层 for 循环上一次迭代算出来的值,也就是对应二维dp
数组中dp[i][j-1]
的位置。
那么问题已经解决了一大半了,只剩下二维dp
数组中的dp[i+1][j-1]
这个状态我们不能直接从一维dp
数组中得到:
for (int i = n - 2; i >= 0; i--) {
for (int j = i + 1; j < n; j++) {
if (s[i] == s[j])
// dp[i][j] = dp[i+1][j-1] + 2;
dp[j] = ?? + 2;
else
// dp[i][j] = max(dp[i+1][j], dp[i][j-1]);
dp[j] = max(dp[j], dp[j - 1]);
}
}
因为 for 循环遍历i
和j
的顺序为从左向右,从下向上,所以可以发现,在更新一维dp
数组的时候,dp[i+1][j-1]
会被dp[i][j-1]
覆盖掉,图中标出了这四个位置被遍历到的次序:
那么如果我们想得到dp[i+1][j-1]
,就必须在它被覆盖之前用一个临时变量temp
把它存起来,并把这个变量的值保留到计算dp[i][j]
的时候。为了达到这个目的,结合上图,我们可以这样写代码:
for (int i = n - 2; i >= 0; i--) {
// 存储 dp[i+1][j-1] 的变量
int pre = 0;
for (int j = i + 1; j < n; j++) {
int temp = dp[j];
if (s[i] == s[j])
// dp[i][j] = dp[i+1][j-1] + 2;
dp[j] = pre + 2;
else
dp[j] = max(dp[j], dp[j - 1]); // 到下一轮循环,pre 就是 dp[i+1][j-1] 了
pre = temp;
}
}
别小看这段代码,这是一维dp
最精妙的地方,会者不难,难者不会。为了清晰起见,我用具体的数值来拆解这个逻辑:
假设现在i = 5, j = 7
且s[5] == s[7]
,那么现在会进入下面这个逻辑对吧:
if (s[5] == s[7])
// dp[5][7] = dp[i+1][j-1] + 2;
dp[7] = pre + 2;
我问你这个pre
变量是什么?是内层 for 循环上一次迭代的temp
值。
那我再问你内层 for 循环上一次迭代的temp
值是什么?是dp[j-1]
也就是dp[6]
,但这是外层 for 循环上一次迭代对应的dp[6]
,也就是二维dp
数组中的dp[i+1][6] = dp[6][6]
。
也就是说,pre
变量就是dp[i+1][j-1] = dp[6][6]
,也就是我们想要的结果。
那么现在我们成功对状态转移方程进行了降维打击,算是最硬的的骨头啃掉了,但注意到我们还有 base case 要处理呀:
// 二维 dp 数组全部初始化为 0
vector<vector<int>> dp(n, vector<int>(n, 0));
// base case
for (int i = 0; i < n; i++)
dp[i][i] = 1;
如何把 base case 也打成一维呢?很简单,记住,状态压缩就是投影,我们把 base case 投影到一维看看:
二维dp
数组中的 base case 全都落入了一维dp
数组,不存在冲突和覆盖,所以说我们直接这样写代码就行了:
// 一维 dp 数组全部初始化为 1
vector<int> dp(n, 1);
至此,我们把 base case 和状态转移方程都进行了降维,实际上已经写出完整代码了:
int longestPalindromeSubseq(string s) {
int n = s.size();
// base case:一维 dp 数组全部初始化为 1
vector<int> dp(n, 1);
for (int i = n - 2; i >= 0; i--) {
int pre = 0;
for (int j = i + 1; j < n; j++) {
int temp = dp[j];
// 状态转移方程
if (s[i] == s[j])
dp[j] = pre + 2;
else
dp[j] = max(dp[j], dp[j - 1]);
pre = temp;
}
}
return dp[n - 1];
}
使用状态压缩技巧对二维dp
数组进行降维打击之后,解法代码的可读性变得非常差了,如果直接看这种解法,任何人都是一脸懵逼的。
算法的优化就是这么一个过程,先写出可读性很好的暴力递归算法,然后尝试运用动态规划技巧优化重叠子问题,最后尝试用状态压缩技巧优化空间复杂度。
一些列题
Leetcode 64 minimum path sum
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
-
记忆搜索
int dp[550][550]
vector<vector<int>> grid;
int dfs(int x, int y)
{
if(x==0&& y==0) return grid[0][0];
if(x<0 || y<0) return INT_MAX;
if(dp[x][y]!=-1) return dp[x][y];
dp[x][y] = min(dfs(x-1,y),dfs(x,y-1))+grid[x][y];
return dp[x][y];
}
-
递推表示
int minpathsum(vector<vector<int>>& grid)
{
int n = grid.size(),m = grid[0].size();
int dp[n][m] = 0;
//边界
dp[0][0] = grid[0][0];
for(int i = 1;i<n;i++) dp[i][0] = dp[i-1][0]+grid[i][0];
for(int j=0;j<m;j++) dp[0][j] = dp[0][j-1]+grid[0][j];
//状态转移
for(i=0;i<n;++i)
for(j = 0;j<m;++j)
dp[i][j] = min(dp[i-1][j],dp[i][j-1])+grid[i][j];
}
最大公约数
int gcd(a,b)
{
if(b==0) return a;
else return gcd(b,a%b);
}
0,1背包问题
状态转移关系:
定义F(i,v):当前背包容量 v,前 i 个物品最佳组合对应的价值
F[i,v] = max(F[i-1,v],F[i-1,v-c[i]]+w[i])
第i件,当前容量为V,第i件体积为c[i],价值为w[i].
核心代码:
int FindMax()//动态规划
{
int i,j;
//填表
for(i=1;i<=number;i++)
{
for(j=1;j<=capacity;j++)
{
if(j<w[i])//包装不进
{
V[i][j]=V[i-1][j];
}
else//能装
{
V[i][j]=max(V[i-1][j],V[i-1][j-w[i]]+v[i]);
}
}
}
return V[number][capacity];
}
空间优化,取消第一维度i,因为可以看出v[i]只与v[i-1]有关:
F[V+1] = {0} // 状态
for(int i =0;i<N;++i) //N个物品
for(int v = V;v>=c[i];v--)// 0,1背包,F(i)(j)是通过F(i-1)(j-c(i))来推导的,所以倒序
F[v] = max(F[v],F[v-c[i]] + w[i]);
return F[V];