双指针算法

转自双指针技巧直接秒杀五道算法题

一、快慢指针的常见算法

快慢指针一般都初始化指向链表的头结点head,前进时快指针fast在前,慢指针slow在后,巧妙解决一些链表中的问题。

1、判定链表中是否含有环

经典解法就是用两个指针,一个跑得快,一个跑得慢。如果不含有环,跑得快的那个指针最终会遇到null,说明链表不含环;如果含有环,快指针最终会超慢指针一圈,和慢指针相遇,说明链表含有环。

力扣第 141 题就是这个问题,解法代码如下:

boolean hasCycle(ListNode head) {
    ListNode fast, slow;
    fast = slow = head;
    while (fast != null && fast.next != null) {
        fast = fast.next.next;
        slow = slow.next;

        if (fast == slow) return true;
    }
    return false;
}

2、已知链表中含有环,返回这个环的起始位置

img

这个问题一点都不困难,有点类似脑筋急转弯,先直接看代码:

ListNode detectCycle(ListNode head) {
    ListNode fast, slow;
    fast = slow = head;
    while (fast != null && fast.next != null) {
        fast = fast.next.next;
        slow = slow.next;
        if (fast == slow) break;
    }
    // 上面的代码类似 hasCycle 函数
    slow = head;
    while (slow != fast) {
        fast = fast.next;
        slow = slow.next;
    }
    return slow;
}

可以看到,当快慢指针相遇时,让其中任一个指针指向头节点,然后让它俩以相同速度前进,再次相遇时所在的节点位置就是环开始的位置。这是为什么呢?

第一次相遇时,假设慢指针slow走了k步,那么快指针fast一定走了2k步:

img

fast一定比slow多走了k步,这多走的k步其实就是fast指针在环里转圈圈,所以k的值就是环长度的「整数倍」

说句题外话,之前还有读者争论为什么是环长度整数倍,我举个简单的例子你就明白了,我们想一想极端情况,假设环长度就是 1,如下图:

img

那么fast肯定早早就进环里转圈圈了,而且肯定会转好多圈,这不就是环长度的整数倍嘛。

言归正传,设相遇点距环的起点的距离为m,那么环的起点距头结点head的距离为k - m,也就是说如果从head前进k - m步就能到达环起点。

巧的是,如果从相遇点继续前进k - m步,也恰好到达环起点。你甭管fast在环里到底转了几圈,反正走k步可以到相遇点,那走k - m步一定就是走到环起点了:

img

所以,只要我们把快慢指针中的任一个重新指向head,然后两个指针同速前进,k - m步后就会相遇,相遇之处就是环的起点了。

3、寻找链表的中点

类似上面的思路,我们还可以让快指针一次前进两步,慢指针一次前进一步,当快指针到达链表尽头时,慢指针就处于链表的中间位置。

力扣第 876 题就是找链表中点的题目,解法代码如下:

ListNode middleNode(ListNode head) {
    ListNode fast, slow;
    fast = slow = head;
    while (fast != null && fast.next != null) {
        fast = fast.next.next;
        slow = slow.next;
    }
    // slow 就在中间位置
    return slow;
}

当链表的长度是奇数时,slow恰巧停在中点位置;如果长度是偶数,slow最终的位置是中间偏右:

img

寻找链表中点的一个重要作用是对链表进行归并排序。

回想数组的归并排序:求中点索引递归地把数组二分,最后合并两个有序数组。对于链表,合并两个有序链表是很简单的,难点就在于二分。

但是现在你学会了找到链表的中点,就能实现链表的二分了。关于归并排序的具体内容本文就不具体展开了。

4、寻找链表的倒数第n个元素

这是力扣第 19 题「删除链表的倒数第n个元素」,先看下题目:

img

我们的思路还是使用快慢指针,让快指针先走n步,然后快慢指针开始同速前进。这样当快指针走到链表末尾null时,慢指针所在的位置就是倒数第n个链表节点(n不会超过链表长度)。

解法比较简单,直接看代码吧:

ListNode removeNthFromEnd(ListNode head, int n) {
    ListNode fast, slow;
    fast = slow = head;
    // 快指针先前进 n 步
    while (n-- > 0) {
        fast = fast.next;
    }
    if (fast == null) {
        // 如果此时快指针走到头了,
        // 说明倒数第 n 个节点就是第一个节点
        return head.next;
    }
    // 让慢指针和快指针同步向前
    while (fast != null && fast.next != null) {
        fast = fast.next;
        slow = slow.next;
    }
    // slow.next 就是倒数第 n 个节点,删除它
    slow.next = slow.next.next;
    return head;
}

二、左右指针的常用算法

左右指针在数组中实际是指两个索引值,一般初始化为left = 0, right = nums.length - 1

1、二分查找

前文 二分查找框架详解 有详细讲解,这里只写最简单的二分算法,旨在突出它的双指针特性:

int binarySearch(int[] nums, int target) {
    int left = 0; 
    int right = nums.length - 1;
    while(left <= right) {
        int mid = (right + left) / 2;
        if(nums[mid] == target)
            return mid; 
        else if (nums[mid] < target)
            left = mid + 1; 
        else if (nums[mid] > target)
            right = mid - 1;
    }
    return -1;
}

2、两数之和

直接看力扣第 167 题「两数之和 II」吧:

img

只要数组有序,就应该想到双指针技巧。这道题的解法有点类似二分查找,通过调节leftright可以调整sum的大小:

int[] twoSum(int[] nums, int target) {
    int left = 0, right = nums.length - 1;
    while (left < right) {
        int sum = nums[left] + nums[right];
        if (sum == target) {
            // 题目要求的索引是从 1 开始的
            return new int[]{left + 1, right + 1};
        } else if (sum < target) {
            left++; // 让 sum 大一点
        } else if (sum > target) {
            right--; // 让 sum 小一点
        }
    }
    return new int[]{-1, -1};
}

3、反转数组

一般编程语言都会提供reverse函数,其实非常简单,力扣第 344 题是类似的需求,让你反转一个char[]类型的字符数组,我们直接看代码吧:

void reverseString(char[] arr) {
    int left = 0;
    int right = arr.length - 1;
    while (left < right) {
        // 交换 arr[left] 和 arr[right]
        char temp = arr[left];
        arr[left] = arr[right];
        arr[right] = temp;
        left++; right--;
    }
}

三、滑动窗口

滑动窗口算法的代码框架

/* 滑动窗口算法框架 */
void slidingWindow(string s, string t) {
    unordered_map<char, int> need, window;
    for (char c : t) need[c]++;

    int left = 0, right = 0;
    int valid = 0; 
    while (right < s.size()) {
        // c 是将移入窗口的字符
        char c = s[right];
        // 右移窗口
        right++;
        // 进行窗口内数据的一系列更新
        ...

        /*** debug 输出的位置 ***/
        printf("window: [%d, %d)\n", left, right);
        /********************/

        // 判断左侧窗口是否要收缩
        while (window needs shrink) {
            // d 是将移出窗口的字符
            char d = s[left];
            // 左移窗口
            left++;
            // 进行窗口内数据的一系列更新
            ...
        }
    }
}

其中两处...表示的更新窗口数据的地方,到时候你直接往里面填就行了

而且,这两个...处的操作分别是右移和左移窗口更新操作,等会你会发现它们操作是完全对称的。

一、最小覆盖子串

LeetCode 76 题,Minimum Window Substring,难度 Hard,我带大家看看它到底有多 Hard

img

就是说要在S(source) 中找到包含T(target) 中全部字母的一个子串,且这个子串一定是所有可能子串中最短的。

如果我们使用暴力解法,代码大概是这样的:

for (int i = 0; i < s.size(); i++)
    for (int j = i + 1; j < s.size(); j++)
        if s[i:j] 包含 t 的所有字母:
            更新答案

思路很直接,但是显然,这个算法的复杂度肯定大于 O(N^2) 了,不好。

滑动窗口算法的思路是这样

1、我们在字符串S中使用双指针中的左右指针技巧,初始化left = right = 0把索引左闭右开区间[left, right)称为一个「窗口」

2、我们先不断地增加right指针扩大窗口[left, right),直到窗口中的字符串符合要求(包含了T中的所有字符)。

3、此时,我们停止增加right,转而不断增加left指针缩小窗口[left, right),直到窗口中的字符串不再符合要求(不包含T中的所有字符了)。同时,每次增加left,我们都要更新一轮结果。

4、重复第 2 和第 3 步,直到right到达字符串S的尽头。

这个思路其实也不难,第 2 步相当于在寻找一个「可行解」,然后第 3 步在优化这个「可行解」,最终找到最优解,也就是最短的覆盖子串。左右指针轮流前进,窗口大小增增减减,窗口不断向右滑动,这就是「滑动窗口」这个名字的来历。

下面画图理解一下,needswindow相当于计数器,分别记录T中字符出现次数和「窗口」中的相应字符的出现次数。

初始状态:

img

增加right,直到窗口[left, right)包含了T中所有字符:

img

现在开始增加left,缩小窗口[left, right)

img

直到窗口中的字符串不再符合要求,left不再继续移动。

img

之后重复上述过程,先移动right,再移动left…… 直到right指针到达字符串S的末端,算法结束。

如果你能够理解上述过程,恭喜,你已经完全掌握了滑动窗口算法思想。现在我们来看看这个滑动窗口代码框架怎么用

首先,初始化windowneed两个哈希表,记录窗口中的字符和需要凑齐的字符:

unordered_map<char, int> need, window;
for (char c : t) need[c]++;

然后,使用leftright变量初始化窗口的两端,不要忘了,区间[left, right)是左闭右开的,所以初始情况下窗口没有包含任何元素:

int left = 0, right = 0;
int valid = 0; 
while (right < s.size()) {
    // 开始滑动
}

其中valid变量表示窗口中满足need条件的字符个数,如果validneed.size的大小相同,则说明窗口已满足条件,已经完全覆盖了串T

现在开始套模板,只需要思考以下四个问题

1、当移动right扩大窗口,即加入字符时,应该更新哪些数据?

2、什么条件下,窗口应该暂停扩大,开始移动left缩小窗口?

3、当移动left缩小窗口,即移出字符时,应该更新哪些数据?

4、我们要的结果应该在扩大窗口时还是缩小窗口时进行更新?

如果一个字符进入窗口,应该增加window计数器;如果一个字符将移出窗口的时候,应该减少window计数器;当valid满足need时应该收缩窗口;应该在收缩窗口的时候更新最终结果。

下面是完整代码:

string minWindow(string s, string t) {
    unordered_map<char, int> need, window;
    for (char c : t) need[c]++;

    int left = 0, right = 0;
    int valid = 0;
    // 记录最小覆盖子串的起始索引及长度
    int start = 0, len = INT_MAX;
    while (right < s.size()) {
        // c 是将移入窗口的字符
        char c = s[right];
        // 右移窗口
        right++;
        // 进行窗口内数据的一系列更新
        if (need.count(c)) {
            window[c]++;
            if (window[c] == need[c])
                valid++;
        }

        // 判断左侧窗口是否要收缩
        while (valid == need.size()) {
            // 在这里更新最小覆盖子串
            if (right - left < len) {
                start = left;
                len = right - left;
            }
            // d 是将移出窗口的字符
            char d = s[left];
            // 左移窗口
            left++;
            // 进行窗口内数据的一系列更新
            if (need.count(d)) {
            		window[d]--;
                if (window[d] == need[d])
                    valid--;
            }                    
        }
    }
    // 返回最小覆盖子串
    return len == INT_MAX ?
        "" : s.substr(start, len);
}

需要注意的是,当我们发现某个字符在window的数量满足了need的需要,就要更新valid,表示有一个字符已经满足要求。而且,你能发现,两次对窗口内数据的更新操作是完全对称的。

valid == need.size()时,说明T中所有字符已经被覆盖,已经得到一个可行的覆盖子串,现在应该开始收缩窗口了,以便得到「最小覆盖子串」。

移动left收缩窗口时,窗口内的字符都是可行解,所以应该在收缩窗口的阶段进行最小覆盖子串的更新,以便从可行解中找到长度最短的最终结果。

至此,应该可以完全理解这套框架了,滑动窗口算法又不难,就是细节问题让人烦得很。以后遇到滑动窗口算法,你就按照这框架写代码,保准没有 bug,还省事儿

下面就直接利用这套框架秒杀几道题吧,你基本上一眼就能看出思路了。

二、字符串排列

LeetCode 567 题,Permutation in String,难度 Medium:

img

注意哦,输入的s1是可以包含重复字符的,所以这个题难度不小。

这种题目,是明显的滑动窗口算法,相当给你一个S和一个T,请问你S中是否存在一个子串,包含T中所有字符且不包含其他字符

首先,先复制粘贴之前的算法框架代码,然后明确刚才提出的 4 个问题,即可写出这道题的答案:

// 判断 s 中是否存在 t 的排列
bool checkInclusion(string t, string s) {
    unordered_map<char, int> need, window;
    for (char c : t) need[c]++;

    int left = 0, right = 0;
    int valid = 0;
    while (right < s.size()) {
        char c = s[right];
        right++;
        // 进行窗口内数据的一系列更新
        if (need.count(c)) {
            window[c]++;
            if (window[c] == need[c])
                valid++;
        }

        // 判断左侧窗口是否要收缩
        while (right - left >= t.size()) {
            // 在这里判断是否找到了合法的子串
            if (valid == need.size())
                return true;
            char d = s[left];
            left++;
            // 进行窗口内数据的一系列更新
            if (need.count(d)) {
                if (window[d] == need[d])
                    valid--;
                window[d]--;
            }
        }
    }
    // 未找到符合条件的子串
    return false;
}

对于这道题的解法代码,基本上和最小覆盖子串一模一样,只需要改变两个地方:

1、本题移动left缩小窗口的时机是窗口大小大于t.size()时,因为排列嘛,显然长度应该是一样的。

2、当发现valid == need.size()时,就说明窗口中就是一个合法的排列,所以立即返回true

至于如何处理窗口的扩大和缩小,和最小覆盖子串完全相同。

三、找所有字母异位词

这是 LeetCode 第 438 题,Find All Anagrams in a String,难度 Medium:

img

呵呵,这个所谓的字母异位词,不就是排列吗,搞个高端的说法就能糊弄人了吗?相当于,输入一个串S,一个串T,找到S中所有T的排列,返回它们的起始索引

直接默写一下框架,明确刚才讲的 4 个问题,即可秒杀这道题:

vector<int> findAnagrams(string s, string t) {
    unordered_map<char, int> need, window;
    for (char c : t) need[c]++;

    int left = 0, right = 0;
    int valid = 0;
    vector<int> res; // 记录结果
    while (right < s.size()) {
        char c = s[right];
        right++;
        // 进行窗口内数据的一系列更新
        if (need.count(c)) {
            window[c]++;
            if (window[c] == need[c]) 
                valid++;
        }
        // 判断左侧窗口是否要收缩
        while (right - left >= t.size()) {
            // 当窗口符合条件时,把起始索引加入 res
            if (valid == need.size())
                res.push_back(left);
            char d = s[left];
            left++;
            // 进行窗口内数据的一系列更新
            if (need.count(d)) {
                if (window[d] == need[d])
                    valid--;
                window[d]--;
            }
        }
    }
    return res;
}

跟寻找字符串的排列一样,只是找到一个合法异位词(排列)之后将起始索引加入res即可。

四、最长无重复子串

这是 LeetCode 第 3 题,Longest Substring Without Repeating Characters,难度 Medium:

img

这个题终于有了点新意,不是一套框架就出答案,不过反而更简单了,稍微改一改框架就行了:

int lengthOfLongestSubstring(string s) {
    unordered_map<char, int> window;

    int left = 0, right = 0;
    int res = 0; // 记录结果
    while (right < s.size()) {
        char c = s[right];
        right++;
        // 进行窗口内数据的一系列更新
        window[c]++;
        // 判断左侧窗口是否要收缩
        while (window[c] > 1) {
            char d = s[left];
            left++;
            // 进行窗口内数据的一系列更新
            window[d]--;
        }
        // 在这里更新答案
        res = max(res, right - left);
    }
    return res;
}

这就是变简单了,连needvalid都不需要,而且更新窗口内数据也只需要简单的更新计数器window即可。

window[c]值大于 1 时,说明窗口中存在重复字符,不符合条件,就该移动left缩小窗口了嘛。

唯一需要注意的是,在哪里更新结果res呢?我们要的是最长无重复子串,哪一个阶段可以保证窗口中的字符串是没有重复的呢?

这里和之前不一样,要在收缩窗口完成后更新res,因为窗口收缩的 while 条件是存在重复元素,换句话说收缩完成后一定保证窗口中没有重复嘛。

posted @ 2020-11-06 20:32  satire  阅读(156)  评论(0编辑  收藏  举报