双指针算法
一、快慢指针的常见算法
快慢指针一般都初始化指向链表的头结点head
,前进时快指针fast
在前,慢指针slow
在后,巧妙解决一些链表中的问题。
1、判定链表中是否含有环
经典解法就是用两个指针,一个跑得快,一个跑得慢。如果不含有环,跑得快的那个指针最终会遇到null
,说明链表不含环;如果含有环,快指针最终会超慢指针一圈,和慢指针相遇,说明链表含有环。
力扣第 141 题就是这个问题,解法代码如下:
boolean hasCycle(ListNode head) {
ListNode fast, slow;
fast = slow = head;
while (fast != null && fast.next != null) {
fast = fast.next.next;
slow = slow.next;
if (fast == slow) return true;
}
return false;
}
2、已知链表中含有环,返回这个环的起始位置
这个问题一点都不困难,有点类似脑筋急转弯,先直接看代码:
ListNode detectCycle(ListNode head) {
ListNode fast, slow;
fast = slow = head;
while (fast != null && fast.next != null) {
fast = fast.next.next;
slow = slow.next;
if (fast == slow) break;
}
// 上面的代码类似 hasCycle 函数
slow = head;
while (slow != fast) {
fast = fast.next;
slow = slow.next;
}
return slow;
}
可以看到,当快慢指针相遇时,让其中任一个指针指向头节点,然后让它俩以相同速度前进,再次相遇时所在的节点位置就是环开始的位置。这是为什么呢?
第一次相遇时,假设慢指针slow
走了k
步,那么快指针fast
一定走了2k
步:
fast
一定比slow
多走了k
步,这多走的k
步其实就是fast
指针在环里转圈圈,所以k
的值就是环长度的「整数倍」。
说句题外话,之前还有读者争论为什么是环长度整数倍,我举个简单的例子你就明白了,我们想一想极端情况,假设环长度就是 1,如下图:
那么fast
肯定早早就进环里转圈圈了,而且肯定会转好多圈,这不就是环长度的整数倍嘛。
言归正传,设相遇点距环的起点的距离为m
,那么环的起点距头结点head
的距离为k - m
,也就是说如果从head
前进k - m
步就能到达环起点。
巧的是,如果从相遇点继续前进k - m
步,也恰好到达环起点。你甭管fast
在环里到底转了几圈,反正走k
步可以到相遇点,那走k - m
步一定就是走到环起点了:
所以,只要我们把快慢指针中的任一个重新指向head
,然后两个指针同速前进,k - m
步后就会相遇,相遇之处就是环的起点了。
3、寻找链表的中点
类似上面的思路,我们还可以让快指针一次前进两步,慢指针一次前进一步,当快指针到达链表尽头时,慢指针就处于链表的中间位置。
力扣第 876 题就是找链表中点的题目,解法代码如下:
ListNode middleNode(ListNode head) {
ListNode fast, slow;
fast = slow = head;
while (fast != null && fast.next != null) {
fast = fast.next.next;
slow = slow.next;
}
// slow 就在中间位置
return slow;
}
当链表的长度是奇数时,slow
恰巧停在中点位置;如果长度是偶数,slow
最终的位置是中间偏右:
寻找链表中点的一个重要作用是对链表进行归并排序。
回想数组的归并排序:求中点索引递归地把数组二分,最后合并两个有序数组。对于链表,合并两个有序链表是很简单的,难点就在于二分。
但是现在你学会了找到链表的中点,就能实现链表的二分了。关于归并排序的具体内容本文就不具体展开了。
4、寻找链表的倒数第n
个元素
这是力扣第 19 题「删除链表的倒数第n
个元素」,先看下题目:
我们的思路还是使用快慢指针,让快指针先走n
步,然后快慢指针开始同速前进。这样当快指针走到链表末尾null
时,慢指针所在的位置就是倒数第n
个链表节点(n
不会超过链表长度)。
解法比较简单,直接看代码吧:
ListNode removeNthFromEnd(ListNode head, int n) {
ListNode fast, slow;
fast = slow = head;
// 快指针先前进 n 步
while (n-- > 0) {
fast = fast.next;
}
if (fast == null) {
// 如果此时快指针走到头了,
// 说明倒数第 n 个节点就是第一个节点
return head.next;
}
// 让慢指针和快指针同步向前
while (fast != null && fast.next != null) {
fast = fast.next;
slow = slow.next;
}
// slow.next 就是倒数第 n 个节点,删除它
slow.next = slow.next.next;
return head;
}
二、左右指针的常用算法
左右指针在数组中实际是指两个索引值,一般初始化为left = 0, right = nums.length - 1
。
1、二分查找
前文 二分查找框架详解 有详细讲解,这里只写最简单的二分算法,旨在突出它的双指针特性:
int binarySearch(int[] nums, int target) {
int left = 0;
int right = nums.length - 1;
while(left <= right) {
int mid = (right + left) / 2;
if(nums[mid] == target)
return mid;
else if (nums[mid] < target)
left = mid + 1;
else if (nums[mid] > target)
right = mid - 1;
}
return -1;
}
2、两数之和
直接看力扣第 167 题「两数之和 II」吧:
只要数组有序,就应该想到双指针技巧。这道题的解法有点类似二分查找,通过调节left
和right
可以调整sum
的大小:
int[] twoSum(int[] nums, int target) {
int left = 0, right = nums.length - 1;
while (left < right) {
int sum = nums[left] + nums[right];
if (sum == target) {
// 题目要求的索引是从 1 开始的
return new int[]{left + 1, right + 1};
} else if (sum < target) {
left++; // 让 sum 大一点
} else if (sum > target) {
right--; // 让 sum 小一点
}
}
return new int[]{-1, -1};
}
3、反转数组
一般编程语言都会提供reverse
函数,其实非常简单,力扣第 344 题是类似的需求,让你反转一个char[]
类型的字符数组,我们直接看代码吧:
void reverseString(char[] arr) {
int left = 0;
int right = arr.length - 1;
while (left < right) {
// 交换 arr[left] 和 arr[right]
char temp = arr[left];
arr[left] = arr[right];
arr[right] = temp;
left++; right--;
}
}
三、滑动窗口
滑动窗口算法的代码框架:
/* 滑动窗口算法框架 */
void slidingWindow(string s, string t) {
unordered_map<char, int> need, window;
for (char c : t) need[c]++;
int left = 0, right = 0;
int valid = 0;
while (right < s.size()) {
// c 是将移入窗口的字符
char c = s[right];
// 右移窗口
right++;
// 进行窗口内数据的一系列更新
...
/*** debug 输出的位置 ***/
printf("window: [%d, %d)\n", left, right);
/********************/
// 判断左侧窗口是否要收缩
while (window needs shrink) {
// d 是将移出窗口的字符
char d = s[left];
// 左移窗口
left++;
// 进行窗口内数据的一系列更新
...
}
}
}
其中两处...
表示的更新窗口数据的地方,到时候你直接往里面填就行了。
而且,这两个...
处的操作分别是右移和左移窗口更新操作,等会你会发现它们操作是完全对称的。
一、最小覆盖子串
LeetCode 76 题,Minimum Window Substring,难度 Hard,我带大家看看它到底有多 Hard:
就是说要在S
(source) 中找到包含T
(target) 中全部字母的一个子串,且这个子串一定是所有可能子串中最短的。
如果我们使用暴力解法,代码大概是这样的:
for (int i = 0; i < s.size(); i++)
for (int j = i + 1; j < s.size(); j++)
if s[i:j] 包含 t 的所有字母:
更新答案
思路很直接,但是显然,这个算法的复杂度肯定大于 O(N^2) 了,不好。
滑动窗口算法的思路是这样:
1、我们在字符串S
中使用双指针中的左右指针技巧,初始化left = right = 0
,把索引左闭右开区间[left, right)
称为一个「窗口」。
2、我们先不断地增加right
指针扩大窗口[left, right)
,直到窗口中的字符串符合要求(包含了T
中的所有字符)。
3、此时,我们停止增加right
,转而不断增加left
指针缩小窗口[left, right)
,直到窗口中的字符串不再符合要求(不包含T
中的所有字符了)。同时,每次增加left
,我们都要更新一轮结果。
4、重复第 2 和第 3 步,直到right
到达字符串S
的尽头。
这个思路其实也不难,第 2 步相当于在寻找一个「可行解」,然后第 3 步在优化这个「可行解」,最终找到最优解,也就是最短的覆盖子串。左右指针轮流前进,窗口大小增增减减,窗口不断向右滑动,这就是「滑动窗口」这个名字的来历。
下面画图理解一下,needs
和window
相当于计数器,分别记录T
中字符出现次数和「窗口」中的相应字符的出现次数。
初始状态:
增加right
,直到窗口[left, right)
包含了T
中所有字符:
现在开始增加left
,缩小窗口[left, right)
。
直到窗口中的字符串不再符合要求,left
不再继续移动。
之后重复上述过程,先移动right
,再移动left
…… 直到right
指针到达字符串S
的末端,算法结束。
如果你能够理解上述过程,恭喜,你已经完全掌握了滑动窗口算法思想。现在我们来看看这个滑动窗口代码框架怎么用:
首先,初始化window
和need
两个哈希表,记录窗口中的字符和需要凑齐的字符:
unordered_map<char, int> need, window;
for (char c : t) need[c]++;
然后,使用left
和right
变量初始化窗口的两端,不要忘了,区间[left, right)
是左闭右开的,所以初始情况下窗口没有包含任何元素:
int left = 0, right = 0;
int valid = 0;
while (right < s.size()) {
// 开始滑动
}
其中valid
变量表示窗口中满足need
条件的字符个数,如果valid
和need.size
的大小相同,则说明窗口已满足条件,已经完全覆盖了串T
。
现在开始套模板,只需要思考以下四个问题:
1、当移动right
扩大窗口,即加入字符时,应该更新哪些数据?
2、什么条件下,窗口应该暂停扩大,开始移动left
缩小窗口?
3、当移动left
缩小窗口,即移出字符时,应该更新哪些数据?
4、我们要的结果应该在扩大窗口时还是缩小窗口时进行更新?
如果一个字符进入窗口,应该增加window
计数器;如果一个字符将移出窗口的时候,应该减少window
计数器;当valid
满足need
时应该收缩窗口;应该在收缩窗口的时候更新最终结果。
下面是完整代码:
string minWindow(string s, string t) {
unordered_map<char, int> need, window;
for (char c : t) need[c]++;
int left = 0, right = 0;
int valid = 0;
// 记录最小覆盖子串的起始索引及长度
int start = 0, len = INT_MAX;
while (right < s.size()) {
// c 是将移入窗口的字符
char c = s[right];
// 右移窗口
right++;
// 进行窗口内数据的一系列更新
if (need.count(c)) {
window[c]++;
if (window[c] == need[c])
valid++;
}
// 判断左侧窗口是否要收缩
while (valid == need.size()) {
// 在这里更新最小覆盖子串
if (right - left < len) {
start = left;
len = right - left;
}
// d 是将移出窗口的字符
char d = s[left];
// 左移窗口
left++;
// 进行窗口内数据的一系列更新
if (need.count(d)) {
window[d]--;
if (window[d] == need[d])
valid--;
}
}
}
// 返回最小覆盖子串
return len == INT_MAX ?
"" : s.substr(start, len);
}
需要注意的是,当我们发现某个字符在window
的数量满足了need
的需要,就要更新valid
,表示有一个字符已经满足要求。而且,你能发现,两次对窗口内数据的更新操作是完全对称的。
当valid == need.size()
时,说明T
中所有字符已经被覆盖,已经得到一个可行的覆盖子串,现在应该开始收缩窗口了,以便得到「最小覆盖子串」。
移动left
收缩窗口时,窗口内的字符都是可行解,所以应该在收缩窗口的阶段进行最小覆盖子串的更新,以便从可行解中找到长度最短的最终结果。
至此,应该可以完全理解这套框架了,滑动窗口算法又不难,就是细节问题让人烦得很。以后遇到滑动窗口算法,你就按照这框架写代码,保准没有 bug,还省事儿。
下面就直接利用这套框架秒杀几道题吧,你基本上一眼就能看出思路了。
二、字符串排列
LeetCode 567 题,Permutation in String,难度 Medium:
注意哦,输入的s1
是可以包含重复字符的,所以这个题难度不小。
这种题目,是明显的滑动窗口算法,相当给你一个S
和一个T
,请问你S
中是否存在一个子串,包含T
中所有字符且不包含其他字符?
首先,先复制粘贴之前的算法框架代码,然后明确刚才提出的 4 个问题,即可写出这道题的答案:
// 判断 s 中是否存在 t 的排列
bool checkInclusion(string t, string s) {
unordered_map<char, int> need, window;
for (char c : t) need[c]++;
int left = 0, right = 0;
int valid = 0;
while (right < s.size()) {
char c = s[right];
right++;
// 进行窗口内数据的一系列更新
if (need.count(c)) {
window[c]++;
if (window[c] == need[c])
valid++;
}
// 判断左侧窗口是否要收缩
while (right - left >= t.size()) {
// 在这里判断是否找到了合法的子串
if (valid == need.size())
return true;
char d = s[left];
left++;
// 进行窗口内数据的一系列更新
if (need.count(d)) {
if (window[d] == need[d])
valid--;
window[d]--;
}
}
}
// 未找到符合条件的子串
return false;
}
对于这道题的解法代码,基本上和最小覆盖子串一模一样,只需要改变两个地方:
1、本题移动left
缩小窗口的时机是窗口大小大于t.size()
时,因为排列嘛,显然长度应该是一样的。
2、当发现valid == need.size()
时,就说明窗口中就是一个合法的排列,所以立即返回true
。
至于如何处理窗口的扩大和缩小,和最小覆盖子串完全相同。
三、找所有字母异位词
这是 LeetCode 第 438 题,Find All Anagrams in a String,难度 Medium:
呵呵,这个所谓的字母异位词,不就是排列吗,搞个高端的说法就能糊弄人了吗?相当于,输入一个串S
,一个串T
,找到S
中所有T
的排列,返回它们的起始索引。
直接默写一下框架,明确刚才讲的 4 个问题,即可秒杀这道题:
vector<int> findAnagrams(string s, string t) {
unordered_map<char, int> need, window;
for (char c : t) need[c]++;
int left = 0, right = 0;
int valid = 0;
vector<int> res; // 记录结果
while (right < s.size()) {
char c = s[right];
right++;
// 进行窗口内数据的一系列更新
if (need.count(c)) {
window[c]++;
if (window[c] == need[c])
valid++;
}
// 判断左侧窗口是否要收缩
while (right - left >= t.size()) {
// 当窗口符合条件时,把起始索引加入 res
if (valid == need.size())
res.push_back(left);
char d = s[left];
left++;
// 进行窗口内数据的一系列更新
if (need.count(d)) {
if (window[d] == need[d])
valid--;
window[d]--;
}
}
}
return res;
}
跟寻找字符串的排列一样,只是找到一个合法异位词(排列)之后将起始索引加入res
即可。
四、最长无重复子串
这是 LeetCode 第 3 题,Longest Substring Without Repeating Characters,难度 Medium:
这个题终于有了点新意,不是一套框架就出答案,不过反而更简单了,稍微改一改框架就行了:
int lengthOfLongestSubstring(string s) {
unordered_map<char, int> window;
int left = 0, right = 0;
int res = 0; // 记录结果
while (right < s.size()) {
char c = s[right];
right++;
// 进行窗口内数据的一系列更新
window[c]++;
// 判断左侧窗口是否要收缩
while (window[c] > 1) {
char d = s[left];
left++;
// 进行窗口内数据的一系列更新
window[d]--;
}
// 在这里更新答案
res = max(res, right - left);
}
return res;
}
这就是变简单了,连need
和valid
都不需要,而且更新窗口内数据也只需要简单的更新计数器window
即可。
当window[c]
值大于 1 时,说明窗口中存在重复字符,不符合条件,就该移动left
缩小窗口了嘛。
唯一需要注意的是,在哪里更新结果res
呢?我们要的是最长无重复子串,哪一个阶段可以保证窗口中的字符串是没有重复的呢?
这里和之前不一样,要在收缩窗口完成后更新res
,因为窗口收缩的 while 条件是存在重复元素,换句话说收缩完成后一定保证窗口中没有重复嘛。