hadoop系列整理---PySpark

【PySpark RDD与DataFrame、Pandas转换】

官网:https://spark.apache.org/docs/latest/rdd-programming-guide.html

 1.  RDD=>  DataFrame

 2.  RDD=>  Pandas

 3.  DataFrame => RDD

 4.  DataFrame => Pandas

 5.  Pandas => DataFrame

【PySpark与Hbase交互】

  jar依赖:spark-examples_2.11-2.4.0.jar

 参考文档:

       pyspark读写HBase

       spark读写HBase数据-scala

       Hbase过滤器---可适当转换成jvm中过滤器

  spark-examples源码地址:https://github.com/apache/spark/tree/branch-2.3

 1. read

conf= {
"inputFormatClass": "org.apache.hadoop.hbase.mapreduce.TableInputFormat",
"keyClass": "org.apache.hadoop.hbase.io.ImmutableBytesWritable",
"valueClass": "org.apache.hadoop.hbase.client.Result",
"keyConverter": "org.apache.spark.examples.pythonconverters.ImmutableBytesWritableToStringConverter",
"valueConverter": "org.apache.spark.examples.pythonconverters.HBaseResultToStringConverter",
"conf": {
"hbase.zookeeper.quorum": hosts,
"hbase.mapreduce.inputtable": table,
"hbase.mapreduce.scan.columns": columns,
}
}
newAPIHadoopRDD(**conf)

 2. write

conf = {
    "path": "-",
"keyConverter": "org.apache.spark.examples.pythonconverters.StringToImmutableBytesWritableConverter",
"valueConverter": "org.apache.spark.examples.pythonconverters.StringListToPutConverter",
"conf": {
"hbase.zookeeper.quorum": hosts,
"hbase.mapred.outputtable": table,
"mapreduce.outputformat.class": "org.apache.hadoop.hbase.mapreduce.TableOutputFormat",
"mapreduce.job.output.key.class": "org.apache.hadoop.hbase.io.ImmutableBytesWritable",
"mapreduce.job.output.value.class": "org.apache.hadoop.io.Writable"
}
}
saveAsNewAPIHadoopDataset(**conf)

【PySpark与elsticsearch交互】

  jar依赖:elasticsearch-hadoop-6.4.1.jar

  官网:https://www.elastic.co/guide/en/elasticsearch/hadoop/current/configuration.html

  参考文档:

        Spark读写Elasticsearch

        pyspark访问Elasticsearch数据

 1. read

conf = {
"inputFormatClass": "org.elasticsearch.hadoop.mr.EsInputFormat",
"keyClass": "org.apache.hadoop.io.NullWritable",
"valueClass": "org.elasticsearch.hadoop.mr.LinkedMapWritable",
"conf": {
"es.nodes": hosts,
     "es.output.json": "true",
"es.resource": f"{_index}/{_type}",
"es.query": query
}
}
newAPIHadoopRDD(**conf)      读取时每一行为Row=("", "{}")

 2. write

conf = {
    "path": "-",
"outputFormatClass": "org.elasticsearch.hadoop.mr.EsOutputFormat",
"keyClass": "org.apache.hadoop.io.NullWritable",
"valueClass": "org.elasticsearch.hadoop.mr.LinkedMapWritable",
"conf": {
"es.nodes": hosts,
"es.resource": f"{_index}/{_type}",
"es.input.json": "true",
"es.index.auto.create": index_auto_create, # 是否自动创建
"es.mapping.id": None if not mapping_id or index_auto_create else mapping_id
}
}
saveAsNewAPIHadoopFile(**conf) 写入时要求每一行为Row=("", "{}")
3. 使用spark Sql读写数据 
参考: https://blog.icocoro.me/2018/03/07/1803-pyspark-elasticsearch/     
pyspark访问Elasticsearch数据

【PySpark与mongodb交互】

   jar依赖:mongo-java-driver-3.6.2.jar, mongo-hadoop-core-2.0.2.jar,

                 [spark-core_2.11-2.3.4.jar, spark-sql_2.11-2.3.4.jar]

   参考文档:pyspark访问MongoDB数据

   spark.sql方式获取配置比较简单   

input_uri = "mongodb://127.0.0.1:27017/spark.spark_test"
output_uri = "mongodb://127.0.0.1:27017/spark.spark_test"
spark = SparkSession \
.builder \
.master("local") \
.appName("MyApp") \
.config("spark.mongodb.input.uri", input_uri) \
.config("spark.mongodb.output.uri", output_uri) \
.config('spark.jars.packages', 'org.mongodb.spark:mongo-spark-connector_2.11:2.2.0') \
.getOrCreate()

df = spark.read.format('com.mongodb.spark.sql.DefaultSource').option("collection", input_collection) \
.option("pipeline", pipeline).load()

df.printSchema()
df.registerTempTable("test_collection")
test_df = sqlctx.sql(sql) # sql语句
# mode 参数可选范围
# * `append`: Append contents of this :class:`DataFrame` to existing data.
# * `overwrite`: Overwrite existing data.
# * `error` or `errorifexists`: Throw an exception if data already exists.
# * `ignore`: Silently ignore this operation if data already exists.

df.write.format("com.mongodb.spark.sql.DefaultSource").option("collection", output_collection).mode("append").save()
spark.stop()

 下面方式测试有异常,详细见官网 https://github.com/mongodb/mongo-hadoop/wiki/Spark-Usage 

 1. read

conf = {
    'inputFormatClass': 'com.mongodb.hadoop.MongoInputFormat',
'keyClass': 'org.apache.hadoop.io.Text',
'valueClass': 'org.apache.hadoop.io.MapWritable',
'conf': {
'mongo.input.uri': 'mongodb://localhost:27017/db.collection',
'mongo.input.query': query
'mongo.input.split.create_input_splits': 'false'
}
}
newAPIHadoopRDD(**conf)

 2. write

conf = {
    'path': '-',
'outputFormatClass': 'com.mongodb.hadoop.MongoOutputFormat',
'keyClass': 'org.apache.hadoop.io.Text',
'valueClass': 'org.apache.hadoop.io.MapWritable',
'conf': {
'mongo.output.uri': 'mongodb://localhost:27017/output.collection'
}
}
saveAsNewAPIHadoopFile(**conf)

关于spark操作hbase配置

解决java.lang.ClassNotFoundException: org.apache.hadoop.hbase.io.ImmutableBytesWritable问题

发现主要是包的问题:

Spark自身携带的spark-examples_2.11-2.3.4.jar不含org.apache.hadoop.hbase.io.ImmutableBytesWritable

需要使用 含有该类的jar包,推荐使用:spark-examples_2.11/1.6.0-typesafe-001.jar

同时设置

export SPARK_DIST_CLASSPATH=$(/usr/local/hadoop/bin/hadoop classpath):$(/usr/local/hbase/bin/hbase classpath):/usr/local/spark/jars/*

Jar包链接:https://mvnrepository.com/artifact/org.apache.spark/spark-examples_2.11/1.6.0-typesafe-001

 

 

方案备选:

参考:https://blog.csdn.net/weixin_39594447/article/details/86696182

1.hbase classpath文件准备
mkdir    $SPARK_HOME/jars/hbase/
cp  $HBASE_HOME/lib/hbase*    $SPARK_HOME/jars/hbase -rf 
cp  $HBASE_HOME/lib/guava* $SPARK_HOME/jars/hbase
cp $HBASE_HOME/lib/htrace* $SPARK_HOME/jars/hbase
cp $HBASE_HOME/lib/protobuf-java* $SPARK_HOME/jars/hbase
cp spark-examples_2.11-1.6.0-typesafe-001.jar $SPARK_HOME/jars/hbase
2. 设置环境
export SPARK_DIST_CLASSPATH=$(/usr/local/hadoop/bin/hadoop classpath):$(/usr/local/hbase/bin/hbase classpath):/usr/local/spark/jars/hbase*

 

PySpark与Java/Scala交互中的一些常用的Spark对象

参考:https://blog.csdn.net/yolohohohoho/article/details/89811462 

SparkContext
如果你的Scala代码需要访问SparkContext(sc),则你的python代码必须传递sc._jsc,并且Scala方法应该接收JavaSparkContext参数并将其解压缩到Scala SparkContext。
import org.apache.spark.api.java.JavaSparkContext
def method(jsc: JavaSparkContext) = {
val sc = JavaSparkContext.toSparkContext(jsc)
}
对于SQLContext,我们可以通过发送sqlContext._ssql_ctx从python传递Scala SQLContext。 它可以直接在Scala端使用。

RDDS
你可以通过rdd._jrdd将它们从Python传递到Scala。 在Scala端,可以通过访问jrdd.rdd来提取JavaRDD(jrdd)。 而将它转换回Python时,我们可以使用:
from pyspark.rdd import RDD
pythonRDD = RDD(jrdd, sc)

要从python发送DataFrame(df),必须传递df._jdf属性。

而将Scala DataFrame返回给python时,可以在python端转换为:

from pyspark.sql import DataFrame
pythonDf = DataFrame(jdf, sqlContext)

DataFrames也可以通过使用registerTempTable并通过sqlContext访问它们。

 
posted @ 2020-05-17 02:17  Satansz  阅读(918)  评论(0编辑  收藏  举报