模拟集成电路设计系列博客——1.1.3 Cascode电流镜
1.1.3 Cascode电流镜
Cascode电流镜是一种高输出阻抗电流镜,其基本结构如下图所示:
首先从\(Q_2\)漏极看进去的输出阻抗仅为\(r_{ds2}\),其分析和基本电流镜非常一样。因此可以认为\(Q_4\)是一个带有\(r_{ds2}\)的源极退化电阻的电流源,利用之前的\((1.1.10)\)公式,可以得到:
其中\(R_s=r_{ds2}\),因此输出阻抗为:
因此输出阻抗倍增了\(g_{m4}r_{ds2}\)的倍数,即一个单管MOS放大器的增益上限,其值可以在10到100之间,根据管子尺寸,电流,以及使用的工艺条件而决定。这个典型的输出阻抗的增长可以用于实现大低频增益的单级放大器。
使用Cascode的电流镜的一个坏处是,它降低了晶体管进入线性区前的最大输出信号摆幅,为了理解这种降低,可以假定有一个n沟道MOS管处于饱和区,其漏源电压必须大于\(V_{eff}\),\(V_{eff}\)的定义是:
其值由下式求出:
如果我们假设所有的晶体管的尺寸与电流相同,则其都有相同的\(V_{eff}\),因此所有的管子都有相同的栅源电压\(V_{GS}=V_{eff}+V_{tn}\),因此:
且:
因此\(Q_2\)的漏源电压比最小的饱和区漏源电压需求要大出一个\(V_{tn}\),由于使得\(Q_4\)不进入线性区的最小输出电压\(V_{D4}\)可以由\(V_{DS2}+V_{eff}\)给出,最小的允许的输出电压\(V_{out}\)可以由下图给出:
再次比\(2V_{eff}\)大出了一个\(V_{tn}\),这种信号的摆幅损失对于最大供电电压可能只有\(1V\)甚至更小的现代工艺来说是一种严重的缺点。
例题:
考虑如上所示Cascode电流镜,\(I_in=100\mu A\)且每个晶体管宽长比为\(W/L=10\mu m/0.4\mu m\),假定使用下表的\(0.35\mu m\)参数,求出电流镜的\(r_{out}\),假定体效应为\(0.2g_{m}\),同时计算出让晶体管都保持在饱和区的最小输出电压\(V_{out}\)。
解答:
假定\(I_{out}=I_{in}\),则可以求出:
以及有:
现在利用公式\((1.1.15)\),可以求出输出阻抗:
为了找到最小输出电压,我们首先确定\(V_{eff}\):
因此可以求出最小输出电压\(V_{out}=2V_{eff}+V_{tn}=0.98V\),与基本电流镜例题相比,其输出阻抗增大了30倍,但是其输出摆幅下降了\(0.76V\)。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具