洛谷 P2014 选课(树形背包)
洛谷 P2014 选课(树形背包)
思路
题面:洛谷 P2014
如题这种有依赖性的任务可以用一棵树表示,因为一个儿子要访问到就必须先访问到父亲。然后,本来本题所有树是森林(没有共同祖先),但是题中的节点\(0\)其实就可以当做一个LCA,从节点\(0\)开始dp。
状态定义:\(dp[x][m]\)x节点,选则m课,获得的最大学分
决策时,类比背包,遍历每一个状态,用儿子的状态更新
dp转移方程(已优化一维):
\[dp[x][i] = max{dp[x][i-j]+dp[son(x)][j]}
\]
这里需要注意的是,你定义的dp状态,是当前节点共选\(m\)课,而节点\(0\)是必须要选到的,所以应该一个选取\(m+1\)个课程,并且最终状态不是\(dp[0][m]\)而是\(dp[0][m+1]\)(卡了我好久……,所以定义dp状态时一定要自己清楚所代表的含义)
此题非常像洛谷 P1273 有线电视网,都是树形dp
代码
#include <cstdio>
#include <vector>
#define MAXN 303
#define INF 0x3fffffff
#define MAX(A,B) ((A)>(B)?(A):(B))
#define MIN(A,B) ((A)<(B)?(A):(B))
using namespace std;
int n,m,dp[MAXN][MAXN];
vector <int> mp[MAXN];
int dfs(int x){
int cnt=1;
for(register int i=0;i<mp[x].size();++i){
int v=mp[x][i];
int sz=dfs(v);
cnt+=sz;
for(register int j=m+1;j>=2;--j)
for(register int k=0;k<=MIN(j-1, sz);++k)
dp[x][j]=MAX(dp[x][j-k]+dp[v][k], dp[x][j]);
}
return cnt;
}
int main(){
scanf("%d %d", &n, &m);
for(register int i=1;i<=n;++i){
int k,s;
scanf("%d %d", &k, &s);
dp[i][1]=s;
mp[k].push_back(i);
}
dfs(0);
printf("%d", dp[0][m+1]);
return 0;
}