k8s 学习笔记之 Pod 控制器——Deployment
Deployment(Deploy)
为了更好的解决服务编排的问题,kubernetes 在 V1.2 版本开始,引入了 Deployment 控制器。值得一提的是,这种控制器并不直接管理 pod,而是通过管理 ReplicaSet 来简介管理 Pod,即:Deployment 管理 ReplicaSet,ReplicaSet 管理 Pod。所以 Deployment 比 ReplicaSet 功能更加强大。
Deployment 主要功能有下面几个:
- 支持 ReplicaSet 的所有功能
- 支持发布的停止、继续
- 支持滚动升级和回滚版本
Deployment 的资源清单文件:
apiVersion: apps/v1 # 版本号 kind: Deployment # 类型 metadata: # 元数据 name: # rs 名称 namespace: # 所属命名空间 labels: #标签 controller: deploy spec: # 详情描述 replicas: 3 # 副本数量 revisionHistoryLimit: 3 # 保留历史版本,默认是10(通过保留 RS 来实现) paused: false # 暂停部署,默认是 false progressDeadlineSeconds: 600 # 部署超时时间(s),默认是600 strategy: # 策略(重建更新和滚动更新) type: RollingUpdate # 滚动更新策略 rollingUpdate: # 滚动更新 maxSurge: 30% # 最大额外可以存在的副本数,可以为百分比,也可以为整数 maxUnavailable: 30% # 最大不可用状态的 Pod 的最大值,可以为百分比,也可以为整数 selector: # 选择器,通过它指定该控制器管理哪些 pod matchLabels: # Labels 匹配规则 app: nginx-pod matchExpressions: # Expressions 匹配规则 - {key: app, operator: In, values: [nginx-pod]} template: # 模板,当副本数量不足时,会根据下面的模板创建 pod 副本 metadata: labels: app: nginx-pod spec: containers: - name: nginx image: nginx:1.17.1 ports: - containerPort: 80
创建 deployment
创建 pc-deployment.yaml,内容如下:
apiVersion: apps/v1 kind: Deployment metadata: name: pc-deployment namespace: dev spec: replicas: 3 selector: matchLabels: app: nginx-pod template: metadata: labels: app: nginx-pod spec: containers: - name: nginx image: nginx:1.17.1
# 创建 deployment [root@k8s-master01 ~]# kubectl create -f pc-deployment.yaml --record=true deployment.apps/pc-deployment created # 查看 deployment # UP-TO-DATE 最新版本的 pod 的数量 # AVAILABLE 当前可用的 pod 的数量 [root@k8s-master01 ~]# kubectl get deploy pc-deployment -n dev NAME READY UP-TO-DATE AVAILABLE AGE pc-deployment 3/3 3 3 15s # 查看 rs # 发现 rs 的名称是在原来 deployment 的名字后面添加了一个10位数的随机串 [root@k8s-master01 ~]# kubectl get rs -n dev NAME DESIRED CURRENT READY AGE pc-deployment-6696798b78 3 3 3 23s # 查看 pod [root@k8s-master01 ~]# kubectl get pods -n dev NAME READY STATUS RESTARTS AGE pc-deployment-6696798b78-d2c8n 1/1 Running 0 107s pc-deployment-6696798b78-smpvp 1/1 Running 0 107s pc-deployment-6696798b78-wvjd8 1/1 Running 0 107s
扩缩容(方法和 RS 类似)
# 变更副本数量为5个 [root@k8s-master01 ~]# kubectl scale deploy pc-deployment --replicas=5 -n dev deployment.apps/pc-deployment scaled # 查看 deployment [root@k8s-master01 ~]# kubectl get deploy pc-deployment -n dev NAME READY UP-TO-DATE AVAILABLE AGE pc-deployment 5/5 5 5 2m # 查看 pod [root@k8s-master01 ~]# kubectl get pods -n dev NAME READY STATUS RESTARTS AGE pc-deployment-6696798b78-d2c8n 1/1 Running 0 4m19s pc-deployment-6696798b78-jxmdq 1/1 Running 0 94s pc-deployment-6696798b78-mktqv 1/1 Running 0 93s pc-deployment-6696798b78-smpvp 1/1 Running 0 4m19s pc-deployment-6696798b78-wvjd8 1/1 Running 0 4m19s # 编辑 deployment 的副本数量,修改 spec:replicas: 4 即可 [root@k8s-master01 ~]# kubectl edit deploy pc-deployment -n dev deployment.apps/pc-deployment edited # 查看 pod [root@k8s-master01 ~]# kubectl get pods -n dev NAME READY STATUS RESTARTS AGE pc-deployment-6696798b78-d2c8n 1/1 Running 0 5m23s pc-deployment-6696798b78-jxmdq 1/1 Running 0 2m38s pc-deployment-6696798b78-smpvp 1/1 Running 0 5m23s pc-deployment-6696798b78-wvjd8 1/1 Running 0 5m23s
镜像更新
deployment 支持两种更新策略:重建更新
和滚动更新
,可以通过strategy
指定策略类型,支持两个属性:
重建更新
:一次性删除所有的旧版本 Pod,然后进行重建新版本的 Pod
滚动更新
:渐进式替代更新,先删除一部分旧版本的 Pod,然后创建对应数量的新版本的 Pod,然后再删除一部分旧 Pod,再创建对应量新的 Pod,以此往复,最终替换所有旧版本的 Pod
strategy:指定新的 Pod 替换旧的 Pod 的策略, 支持两个属性: type:指定策略类型,支持两种策略 Recreate:在创建出新的 Pod 之前会先杀掉所有已存在的 Pod RollingUpdate:滚动更新,就是杀死一部分,就启动一部分,在更新过程中,存在两个版本 Pod rollingUpdate:当 type 为 RollingUpdate 时生效,用于为 RollingUpdate 设置参数,支持两个属性: maxUnavailable:用来指定在升级过程中不可用 Pod 的最大数量,默认为25%。 maxSurge: 用来指定在升级过程中可以超过期望的 Pod 的最大数量,默认为25%。
重建更新
- 编辑 pc-deployment.yaml,在 spec 节点下添加更新策略
spec: strategy: # 策略 type: Recreate # 重建更新
- 创建 deploy 进行验证
# 变更镜像 [root@k8s-master01 ~]# kubectl set image deployment pc-deployment nginx=nginx:1.17.2 -n dev deployment.apps/pc-deployment image updated # 观察升级过程 [root@k8s-master01 ~]# kubectl get pods -n dev -w NAME READY STATUS RESTARTS AGE pc-deployment-5d89bdfbf9-65qcw 1/1 Running 0 31s pc-deployment-5d89bdfbf9-w5nzv 1/1 Running 0 31s pc-deployment-5d89bdfbf9-xpt7w 1/1 Running 0 31s pc-deployment-5d89bdfbf9-xpt7w 1/1 Terminating 0 41s pc-deployment-5d89bdfbf9-65qcw 1/1 Terminating 0 41s pc-deployment-5d89bdfbf9-w5nzv 1/1 Terminating 0 41s pc-deployment-675d469f8b-grn8z 0/1 Pending 0 0s pc-deployment-675d469f8b-hbl4v 0/1 Pending 0 0s pc-deployment-675d469f8b-67nz2 0/1 Pending 0 0s pc-deployment-675d469f8b-grn8z 0/1 ContainerCreating 0 0s pc-deployment-675d469f8b-hbl4v 0/1 ContainerCreating 0 0s pc-deployment-675d469f8b-67nz2 0/1 ContainerCreating 0 0s pc-deployment-675d469f8b-grn8z 1/1 Running 0 1s pc-deployment-675d469f8b-67nz2 1/1 Running 0 1s pc-deployment-675d469f8b-hbl4v 1/1 Running 0 2s
滚动更新
- 编辑 pc-deployment.yaml,在 spec 节点下添加更新策略
spec: strategy: # 策略 type: RollingUpdate # 滚动更新策略 rollingUpdate: maxSurge: 25% maxUnavailable: 25%
- 创建 deploy 进行验证
# 变更镜像 [root@k8s-master01 ~]# kubectl set image deployment pc-deployment nginx=nginx:1.17.3 -n dev deployment.apps/pc-deployment image updated # 观察升级过程 [root@k8s-master01 ~]# kubectl get pods -n dev -w NAME READY STATUS RESTARTS AGE pc-deployment-c848d767-8rbzt 1/1 Running 0 31m pc-deployment-c848d767-h4p68 1/1 Running 0 31m pc-deployment-c848d767-hlmz4 1/1 Running 0 31m pc-deployment-c848d767-rrqcn 1/1 Running 0 31m pc-deployment-966bf7f44-226rx 0/1 Pending 0 0s pc-deployment-966bf7f44-226rx 0/1 ContainerCreating 0 0s pc-deployment-966bf7f44-226rx 1/1 Running 0 1s pc-deployment-c848d767-h4p68 0/1 Terminating 0 34m pc-deployment-966bf7f44-cnd44 0/1 Pending 0 0s pc-deployment-966bf7f44-cnd44 0/1 ContainerCreating 0 0s pc-deployment-966bf7f44-cnd44 1/1 Running 0 2s pc-deployment-c848d767-hlmz4 0/1 Terminating 0 34m pc-deployment-966bf7f44-px48p 0/1 Pending 0 0s pc-deployment-966bf7f44-px48p 0/1 ContainerCreating 0 0s pc-deployment-966bf7f44-px48p 1/1 Running 0 0s pc-deployment-c848d767-8rbzt 0/1 Terminating 0 34m pc-deployment-966bf7f44-dkmqp 0/1 Pending 0 0s pc-deployment-966bf7f44-dkmqp 0/1 ContainerCreating 0 0s pc-deployment-966bf7f44-dkmqp 1/1 Running 0 2s pc-deployment-c848d767-rrqcn 0/1 Terminating 0 34m # 至此,新版本的 pod 创建完毕,就版本的 pod 销毁完毕 # 中间过程是滚动进行的,也就是边销毁边创建
滚动更新的过程:
镜像更新中 rs 的变化
# 查看 rs,发现原来的 rs 的依旧存在,只是 pod 数量变为了0,而后又新产生了一个 rs,pod 数量为4 # 其实这就是 deployment 能够进行版本回退的奥妙所在,后面会详细解释 [root@k8s-master01 ~]# kubectl get rs -n dev NAME DESIRED CURRENT READY AGE pc-deployment-6696798b78 0 0 0 7m37s pc-deployment-6696798b11 0 0 0 5m37s pc-deployment-c848d76789 4 4 4 72s
版本回退
deployment 支持版本升级过程中的暂停、继续功能以及版本回退等诸多功能,下面具体来看
kubectl rollout:版本升级相关功能,支持下面的选项:
- status 显示当前升级状态
- history 显示 升级历史记录
- pause 暂停版本升级过程
- resume 继续已经暂停的版本升级过程
- restart 重启版本升级过程
- undo 回滚到上一级版本(可以使用--to-revision回滚到指定版本)
# 查看当前升级版本的状态 [root@k8s-master01 ~]# kubectl rollout status deploy pc-deployment -n dev deployment "pc-deployment" successfully rolled out # 查看升级历史记录 [root@k8s-master01 ~]# kubectl rollout history deploy pc-deployment -n dev deployment.apps/pc-deployment REVISION CHANGE-CAUSE 1 kubectl create --filename=pc-deployment.yaml --record=true 2 kubectl create --filename=pc-deployment.yaml --record=true 3 kubectl create --filename=pc-deployment.yaml --record=true # 可以发现有三次版本记录,说明完成过两次升级 # 版本回滚 # 这里直接使用`--to-revision=1`回滚到了1版本, 如果省略这个选项,就是回退到上个版本,就是2版本 [root@k8s-master01 ~]# kubectl rollout undo deployment pc-deployment --to-revision=1 -n dev deployment.apps/pc-deployment rolled back # 查看发现,通过 nginx 镜像版本可以发现到了第一版 [root@k8s-master01 ~]# kubectl get deploy -n dev -o wide NAME READY UP-TO-DATE AVAILABLE AGE CONTAINERS IMAGES pc-deployment 4/4 4 4 74m nginx nginx:1.17.1 # 查看 rs,发现第一个 rs 中有4个 pod 运行,后面两个版本的 rs 中 pod 为运行 # 其实 deployment 之所以可是实现版本的回滚,就是通过记录下历史 rs 来实现的, # 一旦想回滚到哪个版本,只需要将当前版本 pod 数量降为0,然后将回滚版本的 pod 提升为目标数量就可以了 [root@k8s-master01 ~]# kubectl get rs -n dev NAME DESIRED CURRENT READY AGE pc-deployment-6696798b78 4 4 4 78m pc-deployment-966bf7f44 0 0 0 37m pc-deployment-c848d767 0 0 0 71m
灰度发布(金丝雀发布)
Deployment 控制器支持控制更新过程中的控制,如“暂停(pause)”或“继续(resume)”更新操作。
比如有一批新的 Pod 资源创建完成后立即暂停更新过程,此时,仅存在一部分新版本的应用,主体部分还是旧的版本。然后,再筛选一小部分的用户请求路由到新版本的 Pod 应用,继续观察能否稳定地按期望的方式运行。确定没问题之后再继续完成余下的 Pod 资源滚动更新,否则立即回滚更新操作。这就是所谓的金丝雀发布。
# 更新 deployment 的版本,并配置暂停 deployment [root@k8s-master01 ~]# kubectl set image deploy pc-deployment nginx=nginx:1.17.4 -n dev && kubectl rollout pause deployment pc-deployment -n dev deployment.apps/pc-deployment image updated deployment.apps/pc-deployment paused # 观察更新状态 [root@k8s-master01 ~]# kubectl rollout status deploy pc-deployment -n dev Waiting for deployment "pc-deployment" rollout to finish: 2 out of 4 new replicas have been updated... # 监控更新的过程,可以看到已经新增了一个资源,但是并未按照预期的状态去删除一个旧的资源,就是因为使用了 pause 暂停命令 [root@k8s-master01 ~]# kubectl get rs -n dev -o wide NAME DESIRED CURRENT READY AGE CONTAINERS IMAGES pc-deployment-5d89bdfbf9 3 3 3 19m nginx nginx:1.17.1 pc-deployment-675d469f8b 0 0 0 14m nginx nginx:1.17.2 pc-deployment-6c9f56fcfb 2 2 2 3m16s nginx nginx:1.17.4 [root@k8s-master01 ~]# kubectl get pods -n dev NAME READY STATUS RESTARTS AGE pc-deployment-5d89bdfbf9-rj8sq 1/1 Running 0 7m33s pc-deployment-5d89bdfbf9-ttwgg 1/1 Running 0 7m35s pc-deployment-5d89bdfbf9-v4wvc 1/1 Running 0 7m34s pc-deployment-6c9f56fcfb-996rt 1/1 Running 0 3m31s pc-deployment-6c9f56fcfb-j2gtj 1/1 Running 0 3m31s # 确保更新的 pod 没问题了,继续更新 [root@k8s-master01 ~]# kubectl rollout resume deploy pc-deployment -n dev deployment.apps/pc-deployment resumed # 查看最后的更新情况 [root@k8s-master01 ~]# kubectl get rs -n dev -o wide NAME DESIRED CURRENT READY AGE CONTAINERS IMAGES pc-deployment-5d89bdfbf9 0 0 0 21m nginx nginx:1.17.1 pc-deployment-675d469f8b 0 0 0 16m nginx nginx:1.17.2 pc-deployment-6c9f56fcfb 4 4 4 5m11s nginx nginx:1.17.4 [root@k8s-master01 ~]# kubectl get pods -n dev NAME READY STATUS RESTARTS AGE pc-deployment-6c9f56fcfb-7bfwh 1/1 Running 0 37s pc-deployment-6c9f56fcfb-996rt 1/1 Running 0 5m27s pc-deployment-6c9f56fcfb-j2gtj 1/1 Running 0 5m27s pc-deployment-6c9f56fcfb-rf84v 1/1 Running 0 37s
删除 Deployment
# 删除 deployment,其下的 rs 和 pod 也将被删除 [root@k8s-master01 ~]# kubectl delete -f pc-deployment.yaml deployment.apps "pc-deployment" deleted
本文作者:三眠
本文链接:https://www.cnblogs.com/sanmian/p/17607847.html
版权声明:本作品采用知识共享署名-非商业性使用-禁止演绎 2.5 中国大陆许可协议进行许可。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步