- Java虚拟机规范中试图定义一种Java内存模型(Java Memory Model,JMM)来屏蔽掉各种硬件和操作系统的内存访问差异,以实现让Java程序在各种平台下都能达到一致的内存访问效果。
- C/C++直接使用武力硬件和操作系统的内存模型,因此,有可能导致程序在一套平台上并发完全正常,而在另一外一套平台上并发访问却经常出错,因此在某些场景就必须针对不同的平台来编写程序。
- 定义Java内存模型,得足够严谨,才能让Java的并发内存访问操作不会产生歧义;也得足够宽松,使得虚拟机的实现有足够的自由空间去利用硬件的各种特性(寄存器、高速缓存和指令集中某些特有的指令)来获取更好的执行速度。
1、主内存与工作内存
- Java内存模型的主要目标是定义程序中各个变量的访问规则,即在虚拟机中将变量存储到内存和从内存中取出变量这样的底层细节。
- 此处的变量(Variable)与Java编程中所说的变量有所区别,它包括了实例字段、静态字段和构成数组对象的元素,但不包括局部变量与方法参数,因为后者是线程私有的,不会被共享,自然就不会存在竞争问题。
- 为了获得较好的执行效能,Java内存模型并没有限制执行引擎使用处理器的特定寄存器或缓存来和主内存进行交互,也没有限制即时编译器进行调整代码执行顺序这类优化措施。
- Java内存模型规定了所有的变量都存储在主内存(Main Memory)中(此处的主内存与介绍物理硬件时的主内存名字一样,两者也可以互相类比,但此处仅是虚拟机内存的一部分)。
- 每条线程还有自己的工作内存(Working Memory,可与前面讲的处理器高速缓存类比),线程的工作内存中保存了被该线程使用到的变量的主内存副本拷贝,线程对变量的所有操作(读取、赋值等)都必须在工作内存中的变量,而不能直接读写主内存中的变量。
- 不同的线程之间也无法直接访问对工作内存中的变量,线程间变量值得传递均需要通过主内存来完成,线程、主内存、工作内存三者的交互关系如图:
- 这里所讲的主内存、工作内存与Java内存区域中的Java堆、栈、方法区等并不是同一个层次的内存划分,这两者基本上是没有关系的,如果两者一定要勉强对应起来,那从变量、主内存、工作内存的定义来看,主内存主要对应于Java堆中的对象实例数据部分,而工作内存则对应于虚拟机栈中的部分区域。
- 从更低层次上说,主内存就直接对应于物理硬件的内存,而为了获取更好的运行速度,虚拟机(甚至是硬件系统本身的优化措施)可能会让工作内存优先存储于寄存器和高速缓存中,因为程序运行时主要访问读写的是工作内存。
2、内存间交互操作
- 关于主内存与工作内存之间具体的交互协议,即一个变量如何从主内存拷贝到工作内存、如何从工作内存同步回主内存之类的实现细节,Java内存模型中定义了以下8种操作来完成,虚拟机实现时必须保证下面提及的每一个操作都是原子的、不可再分的(对于double和long类型的变量来说,load、store、read和write操作在某些平台上允许有例外)。
- lock(锁定):作用于主内存的变量,它把一个变量标识为一条线程独占的状态。
- unlock(解锁):作用于主内存的变量,它把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定。
- read(读取):作用于主内存的变量,它把一个变量的值从主内存传输到线程的工作内存中,以便随后的load动作使用。
- load(载入):作用于工作内存的变量,它把read操作从主内存中得到的变量值放入工作内存的变量副本中。
- use(使用):作用于工作内存的变量,它把工作内存中一个变量的值传递给执行引擎,每当虚拟机遇到一个需要使用到变量的值的字节码指令时将会执行这个操作。
- assign(赋值):作用于工作内存的变量,它把一个从执行引擎接收到的值赋给工作内存的变量,每当虚拟机遇到一个给变量赋值的字节码指令时执行这个操作。
- store(存储):作用于工作内存的变量,它把工作内存中一个变量的值传送到主内存中,以便随后的write操作使用。
- write(写入):作用于主内存的变量,它把store操作从工作内存中得到的变量的值放入主内存的变量中。
- 如果要把一个变量从主内存复制到工作内存,那就要顺序地执行read和load操作,如果要把变量从工作内存同步回主内存,就要顺序地执行store和write操作。主要,Java内存模型只要上述两个操作必须按顺序执行,而没有保证是连续执行。也就是说,read与load之间、store与write之间是可插入其他指令的,如对主内存的变量a、b进行访问时,一种可能出现顺序是read a、read b、load b、load a。
- 除此之外,Java内存模型还规定了在执行上述8种基本操作时必须满足如下规则:
- 不允许read和load、store和write操作之一单独出现,即不允许一个变量从主内存读取了但工作内存不接受,或者从工作内存发起回写了但主内存不接受的情况出现。
- 不允许一个线程丢弃它的最近的assign操作,即变量在工作内存中改变了之后必须把该变化同步回主内存。
- 不允许一个线程无原因地(没有发生过任何assign操作)把数据从线程的工作内存同步回主内存中。
- 一个新的变量只能在主内存中“诞生”,不允许在工作内存中直接使用一个未被初始化(load或assign)的变量,换句话说,就是对一个变量实施use、store操作之前,必须先执行了assign和load操作。
- 一个变量在同一个时刻只允许一个线程对其进行lock操作,但lock操作可以被同一条线程反复执行多次,多次执行lock后,只有执行相同次数的unlock操作,变量才会被解锁。
- 如果对一个变量执行lock操作,那将会清空工作内存中此变量的值,在执行引擎使用这个变量前,需要重新执行load或assign操作初始化变量的值。
- 如果一个变量事先没有被lock操作锁定,那就不允许对它执行unlock操作,也不允许去unlock一个被其他线程锁定住的变量。
- 对一个变量执行unlock操作之前,必须先把此变量同步回主内存中(执行store、write)。
- 这8种内存访问操作以及上述规则限定,再加上稍后介绍的对volatile的一些特殊规定,就已经完全确定了Java程序中哪些内存访问操作在并发下是安全。
3、对于volatile型变量的特殊规则
- 关键字volatile可以说是Java虚拟机提供的最轻量级的同步机制,但是它并不容易完全被正确、完整地理解,遇到需要处理多线程数据竞争问题的时候一律使用synchronized来进行同步。
- Java内存模型对volatile专门定义了一些特殊的访问规则。
- 当一个变量定义为volatile之后,它将具备两种特性,第一是保证此变量对所有线程的可见性,这里的“可见性”是指当一条线程修改了这个变量的值,新值对于其他线程来说是可以立即得知的。而普通变量不能做到这一点,普通变量的值在线程间传递均需要通过主内存来完成,例如,线程A修改一个普通变量的值,然后向主内存进行回写,另外一个线程B在线程A回写完成了之后再从主内存进行读取操作,新变量值才会对线程B可见。
- 关于volatile变量的可见性,经常会被开发人员误解,认为以下描述成立:“volatile变量对所有线程是立即可见的,对volatile变量所有的写操作都能立刻反应到其他线程之中,换句话说,volatile变量在各个线程中是一致的,所有基于volatile变量的运算在并发下是安全的”。这句话的论据部分并没有错,但是其论据并不能得出“基于volatile变量的运算在并发下是安全的”这个结论。
- volatile变量在各个线程的工作内存中不存在一致性问题(在各个线程的工作内存中,volatile变量也可以存在不一致的情况,但由于每次使用之前都要先刷新,执行引擎看不到不一致的情况,因此可以认为不存在一致性问题),但是Java里面的运算并非原子性操作,导致volatile变量的运算在并发下一样是不安全的。
public class VolatileTest {
public static volatile int race = 0;
public static void increase() {
race++;
}
private static final int THREAD_COUNT = 20;
public static void main(String[] args) {
Thread[] threads = new Thread[THREAD_COUNT];
for (int i = 0; i < THREAD_COUNT; i++) {
threads[i] = new Thread(new Runnable() {
@Override
public void run() {
for (int i = 0; i < 10000; i++) {
increase();
}
}
});
threads[i].start();
}
// 等待所有累加线程都结束
while (Thread.activeCount() > 1) {
Thread.yield();
}
System.out.println(race);
}
}
- 如果正确的话,最后的输出结果是200000。实际上每次都是一个小于200000的数字。
- 问题出在自增运算“race++”之中,我们用javap反编译这段代码后会得到如下代码:
public static void increace();
Code:
Stack=2, Locals=0, Args_size=0
0: getstatic #13; // Field race:1
3: iconst_1
4: iadd
5: putstatic #13; // Field race:1
8: return
LineNumberTable:
line 14: 0
line 15: 8
- 发现只有一行代码的increase()方法在Class文件中是由4条字节码指令构成的(return指令不是由race++产生的,这条指令可以不计算),从字节码层面上很容易就分析出并发失败的原因:当getstatic指令把race的值取到操作栈顶时,volatile关键字保证了race的值在此时是正确的,但是在执行iconst_1、iadd这些指令的时候,其他线程可能已经把race的值加大了,而在操作栈顶的值就变成了过期的数据,所以putstatic指令执行后就可以把较小的race值同步回主内存之中。
- 客观地说,笔者在此使用字节码来分析并发问题,仍然是不严谨的,因为即使编译出来只有一条字节码指令,也并不意味执行这条指令就是一个原子操作。一条字节码指令在解释执行时,解释器将要运行许多代码才能实现它的语义。
- 如果是编译执行,一条字节码指令也可能转化成若干条本地机器指令,此处使用-XX:+PrintAssembly参数输出反编译来分析会更加严谨。
- 由于volatile变量只能保证可见性,在不符合以下两条规则的运算场景中,我们仍然要通过加锁(使用synchronized或java.util.concurrent中的原子类)来保证原子性。
- 运算结果并不依赖变量的当前值,或者能够确保只有单一的线程修改变量的值。
- 变量不需要与其他的状态变量共同参与不变约束。
- 像下面代码的这类场景就很适合使用volatile变量来控制并发,当shutdown()方法被调用时,能保证所有线程中执行的doWork()方法都立即停下来。
volatile boolean shutdownRequested;
public void shutdown() {
shutdownRequested = true;
}
public void doWork() {
while (!shutdownRequested) {
// do stuff
}
}
- 使用volatile变量的第二个语义是禁止指令重排序优化,普通的变量仅仅会保证在该方法的执行过程中所有依赖赋值结果的地方都能获取到正确的结果,而不能保证变量赋值操作的顺序与程序代码中的执行顺序一致。
- 因为在一个线程的方法执行过程中无法感知到这点,这样就是Java内存模型中描述的所谓的“线程内变现为串行的语义”(Within-Thread As-If-Serial Semantics)。
- 通过一个例子来看看为何指令重排序会干扰程序的并发执行:
Map configOptions;
char[] configText;
// 此变量必须定义为volatile
volatile boolean initialized = false;
// 假设以下代码在线程A中执行
// 模拟读取配置信息,当读取完成后将initialized设置为true以通知其他线程配置可用
configOptions = new HashMap();
configText = readConfigFile(fileName);
processConfigOptions(configText, configOptions);
initialized = true;
// 假设以下代码在线程B中执行
// 等待initialized为true,代表线程A已经把配置信息初始化完成
while (!initialized) {
sleep();
}
// 使用线程A中初始化好的配置信息
doSomethingWithConfig();
- 如果定义initialized变量时没有使用volatile修饰,就可能会由于指令重排序的优化,导致位于线程A中最后一句的代码“initialized = true”被提前执行(这里虽然使用Java作为伪代码,但所指的重排序优化是机器级的优化操作,提前执行是指这句话对应的汇编代码被提前执行),这样在线程B中使用配置信息的代码就可能出现错误,而volatile关键字则可以避免此类情况的发生。
- 一个可以实际操作运行的例子来分析voaltile关键字是如何禁止指令重排序优化的。下面代码是一段标准的DCL单例代码,可以观察加入volatile和未加入volatile关键字时所生产汇编代码的差别。
public class Singleton {
private volatile static Singleton instance;
public static Singleton getInstance() {
if (instance == null) {
synchronized (Singleton.class) {
if (instance == null) {
instance = new Singleton();
}
}
}
return instance;
}
public static void main(String[] args) {
Singleton.getInstance();
}
}
- 编译后,这段代码对instance变量赋值部分如下:
0f: mov $0x3375cdb0, %esi
14: mov $eax, 0x150(%esi)
1a: shr $0x9, %esi
1d: movb $0x0, 0x1104800(%esi)
24: lock addl $0x0, (%esp)
Singleton::getInstance@24
- volatile屏蔽指令重排序的语义在JDK1.5中才完全修复,这点也是在JDK1.5之前的Java中无法完全地使用DCL(双锁检测)来实现单例模式的原因。
- 通过对比就会发现,关键变化在于有volatile修饰的变量,赋值后(前面mov %eax, 0x150(%esi)这句便是赋值操作)多执行了一个“lock add1 $0x0,(%esp)”操作,这个操作相当于一个内存屏障(Memory Barrier或Memory Fence,指重排序时不能把后面的指令重排序到内存屏蔽之前的位置),只有一个CPU访问内存时,并不需要内存屏障;
- 但如果有两个或更多CPU访问同一块内存,且其中有一个在观测另一个,就需要内存屏障来保证一致性了。
- 这句指令中的“add1 $0x0, (%esp)”(把ESP寄存器的值加0)显然是一个空操作(采用这个空操作而不是空操作指令nop是因为IA32手册规定lock前缀不允许配合nop指令使用),关键在于lock前缀,查询IA32手册,它的作用是使得本CPU的Cache写入了内存,该写入动作也会引起别的CPU或者别的内核无效化(Invalidate)其Cache,这种操作相当于对Cache中的变量做了一次前面介绍Java内存模式中所说的“store和write”操作。所以通过这样一个空操作,可让前面volatile变量的修改对其他CPU立即可见。
- 那为何说它禁止指令重排序呢?从硬件架构上讲,指令重排序是指CPU采用了允许将多条指令不按程序规定的顺序分发送给各相应电路单元处理。但并不是说指令任意重排,CPU需要能正确处理指令依赖情况以保障程序能得出正确的执行结果。
- 譬如指令1把地址A中的值加10,指令2把地址A中的值乘以2,指令3把地址B中的值减去3,这时指令1和指令2是有依赖的,它们之间的顺序不能重排——(A+10)* 2 与 A * 2 + 10显然不相等,但指令3可以重排到指令1、2之前或者中间,只要保证CPU执行后面依赖到A、B值的操作时能获取到正确的A和B即可。
- 所以在本内CPU中,重排序看起来依然是有序的。因此,lock add1 $0x0,(%esp)指令把修改同步到内存时,意味着所有之前的操作都已经执行完成,这样便形成了“指令重排序无法越过内存屏障”的效果。
- 解决了volatile的语义问题,再来看看在众多保障并发安全的工具中选用volatile的意义——它能让我们的代码比使用其他的同步工具更快吗?
- 在某些情况下,volatile的同步机制的性能确实要优于锁(使用synchronized关键字或java.util.concurrent包里面的锁),但是由于虚拟机对锁实行的许多消除和优化,使得我们很难量化地认为volatile就会比synchronized快多少。
- 如果让volatile自己与自己比较,那可以确定一个原则:volatile变量读操作的性能消耗与普通变量几乎没有什么差别,但是写操作则可能会慢一些,因为它需要在本地代码中插入许多内存屏障指令来保证处理器不发生乱序执行。
- 大多数场景下volatile的总开销仍然要比锁低,我们在volatile与锁之中选择的唯一依据仅仅是volatile的语义能否满足使用场景的需求。
Java内存模型中对volatile变量定义的特殊规则。
- 假定T表示一个线程,V和W分别表示两个volatile型变量,那么在进行read、load、use、assign、store和write操作时需要满足如下规则:
- 只有当线程T对变量V执行的前一个动作是load的时候,线程T才能对变量V执行use动作:并且,只有当线程T对变量V执行的后一个动作是use的时候,线程T才能对变量V执行load动作。线程T对变量V的use动作可以认为是和线程T对变量V的load、read动作相关联,必须连续一起出现(这条规则要求在工作内存中,每次使用V前都必须先从主内存刷新最新的值,用于保证能看见其他线程对变量V所做的修改后的值)。
- 只有当线程T对变量V执行的前一个动作是assign的时候,线程T才能对变量V执行store动作;并且,只有当线程T对变量V执行后一个动作是store的时候,线程T才能对变量V执行assign动作。线程T对变量V的assign动作可以认为是和线程T对变量V的store、write动作相关联,必须连续一起出现(这条规则要求在工作内存中,每次修改V后都必须立刻同步回主内存中,用于保证其他线程可以看到自己对变量V所做的修改)。
- 假定动作A是线程T对变量V实施的use或assign动作,假定动作F是和动作A相关联的load或者store动作,假定动作P是和动作F相应的对应量V的read或write动作;类似的,假定动作B是线程T对变量W实施的use或assign动作,假定动作G是和动作B相关联的load或store动作,假定动作Q是和动作G相应的对变量W的read或write动作。如果A先于B,那么P先于Q(这条规则要求volatile修饰的变量不会被指令重排序优化,保证代码的执行顺序与程序的顺序相同)。
4、对于long和double型变量的特殊规则
- Java内存模型要求lock、unlock、read、load、assign、use、store、write这8个操作都具有原子性,但是对于64位的数据类型(long和double),在模型中特别定义了一条相对宽松的规定:允许虚拟机将没有被volatile修饰的64位数据的读写操作划分为两次32位的操作来进行,即允许虚拟机实现选择可以不保证64数据类型的load、store、read和write这4个操作的原子性,这点就是所谓的long和double的非原子协议。
- 如果有多个线程共享一个并未声明为volatile的long或double类型的变量,并且同时对它们进行读取和修改操作,那么某些线程可能会读取到一个即非原值,也不是其他线程修改值的代表了“半个变量”的数值。
- 不过这种读取到“半个变量”的情况非常罕见(在目前商用Java虚拟机中不会出现),因为Java内存模型虽然允许虚拟机不把long和double变量的读写实现成原子操作,但允许虚拟机选择把这些操作实现为具有原子性的操作,而且还“强烈建议”虚拟机这样实现。
- 在实际开发中,目前各种平台下的商用虚拟机几乎都选择把64位数据的读写操作作为原子操作来对待,因此我们在编写代码时一般不需要把用到的long和double变量专门声明为volatile。
5、原子性、可见性与有序性
原子性(Atomicity)
- 由Java内存模型来直接保证的原子性变量操作包括read、load、assign、use、store和write,我们大致可以认为基本数据类型的访问读写是具备原子性的(例外就是long和double的非原子性协定)。
- 如果应用场景需要一个更大范围的原子性保证,Java内存模型还提供了lock和unlock操作来满足这种需求,尽管虚拟机未把lock和unlock操作直接开放给用户使用,但是却提供了更高层次的字节码指令monitorenter和monitorexit来隐式地使用这两个操作,这两个字节码指令反映到Java代码中就是同步块——synchronized关键字,因此在synchronized块之间的操作也具备原子性。
可见性(Visibility)
- 可见性是指当一个线程修改了共享变量的值,其他线程能够立即得知这个修改。Java内存模型是通过在变量修改后将新值同步回主内存,在变量读取前从主内存刷新变量值这种依赖主内存作为传递媒介的方式来实现可见性的,无论是普通变量还是volatile变量都是如此,普通变量与volatile变量的区别是,volatile的特殊规则保证了新值能立即同步到主内存,以及每次使用前立即从主内存刷新。因此,可以说volatile保证了多线程操作时变量的可见性,而普通变量则不能保证这一点。
- 除了volatile之外,Java还有两个关键字能实现可见性,即synchronized和final。同步块的可见性是由“对一个变量执行unlock操作之前,必须先把此变量同步回主内存中(执行store、write操作)”这条规则获得的;
- 而final关键字的可见性是指:被final修饰的字段在构造器中一旦初始化完成,并且构造器没有把“this”的引用传递出去(this引用逃逸是一件很危险的事情,其他线程有可能通过这个引用访问到“初始化了一半”的对象),那在其他线程中就能看见final字段的值。如下代码,变量i和j都具备可见性,它们无须同步就能被其他线程正确访问。
public static final int i;
public final int j;
static {
i = 0;
// do something
}
{
// 也可以选择在构造函数中初始化
j = 0;
// do something
}
有序性(Ordering)
- 如果在本线程内观察,所有的操作都是有序的;如果在一个线程中观察另一个线程,所有的操作都是无序的。
- 前半句是指“线程内表现为串行的语义”(Within-Thread As-If-Serial Semantics),后半句是指“指令重排序”现象和“工作内存与主内存同步延迟”现象。
- Java语义提供了volatile和synchronized两个关键字来保证线程之间操作的有序性,volatile关键字本身就包含了禁止指令重排序的语义,而synchronized则是由“一个变量在同一个时刻只允许一条线程对其进行lock操作”这条规则获得的,这条规则决定了持有同一个锁的两个同步块只能串行地进入。
6、先行发生原则
- 先行发生是Java内存模型中定义的两项操作之间的偏序关系,如果说操作A先发生于操作B,其实就是说在发生操作B之前,操作A产生的影响能被操作B观察到,“影响”包括修改了内存中共享变量的值、发送了信息、调用了方法等。
// 以下操作在线程A中执行
i = 1;
// 以下操作在线程B中执行
j = i;
// 以下操作在线程C中执行
i = 2;
- 假设线程A中的操作“i=1”先行发生于线程B的操作“j=i”,那么可以确定在线程B的操作之后,变量j的值一定等于1,得出这个结论的依据有两个:一是根据先行发生原则,“i = 1”的结果可以被观察到;二是线程C还没“登场”,线程A操作结束之后没有其他线程会修改变量i的值。
- 现在再来考虑线程C,我们依然保持线程A和线程B之间的先行发生关系,而线程C出现在线程A和线程B的操作之间,但是线程C与线程B没有先行发生关系,那j的值会是多少呢?答案是不确定!1和2都有可能,因为线程C对变量i的影响可能会被线程B观察到,也可能不会,这时候线程B就存在读取到过期数据的风险,不具备多线程安全性。
- 下面是Java内存模型下一些“天然的”先行发生关系,这些先行发生关系无须任何同步器协助就已经存在,可以在编码中直接使用。如果两个操作之间的关系不在此列,并且无法从下列规则推导出来的话,他们就没有顺序性保障,虚拟机可以对它们随意地进行重排序。
- 程序次序规则:在一个线程内,按照程序代码顺序,书写在前面的操作先行发生于书写在后面的操作。准确地说,应该是控制流顺序而不是程序代码顺序,因为要考虑分支、循环等结构。
- 管程锁定规则:一个unlock操作先行发生于后面对同一个锁的lock操作。这里必须强调的是同一个锁,而“后面”的是指时间上的先后顺序。
- volatile变量规则:对一个volatile变量的写操作先行发生于后面对这个变量的读操作,这里的“后面”同样是指时间上的先后顺序。
- 线程启动规则:Thread对象的start()方法先行发生于此线程的每一个动作。
- 线程终止规则:线程中的所有操作都先行发生于对此线程的终止检测,我们可以通过Thread.join()方法结束、Thread.isAlive()的返回值等手段检测到线程已经终止执行。
- 线程中断规则:对线程interrupt()方法的调用先行发生于被中断线程代码检测到中断事件的发生,可以通过Thread.interrupted()方法检测到是否有中断发生。
- 对象终结规则:一个对象的初始化完成(构造函数执行结束)先行发生于它的finalize()方法的开始。
- 传递性:如果操作A先行发生于操作B,操作B先行发生于操作C,那就可以得出操作A先行发生于操作C的结论。
- Java语言无须任何同步手段保障就能成立的先行发生规则就只有上面这些了,如何使用这些规则去判定操作间是否具备顺序性,对于读写共享变量的操作来说,就是线程是否安全。
- 感受一下“时间上的先后顺序”与“先行发生”之间有什么不同。
private int value = 0;
public void setVlaue(int value) {
this.value = value;
}
public int getValue() {
return value;
}
- 代码显示的是一组普通的getter/setter方法,假设存在线程A和B,线程A先(时间上的先后)调用了“setValue(1)”,然后线程B调用了同一个对象的“getValue”,那么线程B收到的返回值是什么?
- 我们依次分析一下先行发生原则中的各项规则,由于两个方法分别由线程A和线程B调用,不在一个线程中,所以程序次序规则在这里不适用;由于没有同步块,自然就不会发生lock和unlock操作,所以管程规定规则不适用;
- 由于没有同步块,自然就不会发生lock和unlock操作,所以管程锁定规则不适用;
- 由于value变量没有被volatile关键字修饰,所以volatile变量规则不适用;
- 后面的线程启动、终止、中断规则和对象终结规则也和这里完全没有关系。
- 因为没有一个使用的先行发生规则,所以最后一条传递性也不会适用。
- 因此我们可以判定尽管线程A在操作时间上先于线程B,但是无法确定线程B中“getValue()”方法返回结果,这操作不是线程安全的。
- 我们至少有两种比较简单的方案可以选择:要么把getter/setter方法都定义为synchronized方法,这样就可以套用管程锁定规则:要么把value定义为volatile变量,由于setter方法对value的修改不依赖value的原值,满足volatile关键字使用场景,这样就可以套用volatile变量规则来实现先行发生关系。
- 通过上面的例子,我们可以得出结论:一个操作“时间上的先发生”不代表这个操作会是“先行发生”,那如果一个操作“先行发生”是否就能推导出这个操作必定是“时间上的先发生”呢?很遗憾,这个推论是不成立的,一个典型的例子就是多次提到的“指令重排序”。
// 以下操作在同一个线程中执行
int i = 1;
int j = 2;
- 两条赋值语句在同一个线程之中,根据程序次序规则,“int i = 1”的操作先行发生于"int j = 2",但是“int j = 2”的代码完全可能先被处理器执行,这并不影响先行发生原则的正确性,因为我们在这条线程之中没有办法感知这点。
- 证明了一个结论:时间先后顺序与先行发生原则之间基本没有太大的关系,所以我们衡量并发安全问题的时候不要受到时间顺序的干扰,一切必须以先行发生原则为准。