P5144 【蜈蚣】

区间DP题

是时候补补我的 dp 了,毕竟我太菜了。

首先是区间的异或,应该很容易想到前缀异或和

看到题目,区间转移,最大值,这不区间dp吗

很快想到状态 f[i][j] , i表示已经分成了 i段, j表示砍到了位置 j

那么如何转移呢,区间DP最大的特点就是 3 层 for ,第二三层枚举的是区间端点,第一层枚举断点。

那么在这道题我们第一层显然是要枚举段数,

那么转移方程就有了 f[k+1][j]=max(f[k+1][j],f[k][i]+(sum[j]~\hat{ }~ sum[i])

然后最终答案就是 f[m][n]

最后还有初始状态, f[1][j]=sum[j]因为前 j 个位置只有一段的话就是 1 ~ j的异或和

然后上代码

复制代码
#include<iostream>
#include<cstdio>
using namespace std;
const int N=1005,M=105;
int n,m,x;
int sum[N],f[M][N];
int main(){
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;++i){
        scanf("%d",&x);
        sum[i]=sum[i-1]^x;
    }
    for(int i=1;i<=n;++i)
        f[1][i]=sum[i];
    for(int k=1;k<=m;++k)
        for(int i=1;i<=n;++i)
            for(int j=i;j<=n;++j)
                f[k+1][j]=max(f[k+1][j],f[k][i]+(sum[j]^sum[i]));
    printf("%d\n",f[m][n]);
    return 0;
}
复制代码

 

posted @   流逝丶  阅读(165)  评论(0编辑  收藏  举报
编辑推荐:
· DeepSeek 解答了困扰我五年的技术问题
· 为什么说在企业级应用开发中,后端往往是效率杀手?
· 用 C# 插值字符串处理器写一个 sscanf
· Java 中堆内存和栈内存上的数据分布和特点
· 开发中对象命名的一点思考
阅读排行:
· DeepSeek 解答了困扰我五年的技术问题。时代确实变了!
· PPT革命!DeepSeek+Kimi=N小时工作5分钟完成?
· What?废柴, 还在本地部署DeepSeek吗?Are you kidding?
· 赶AI大潮:在VSCode中使用DeepSeek及近百种模型的极简方法
· DeepSeek企业级部署实战指南:从服务器选型到Dify私有化落地
点击右上角即可分享
微信分享提示