如何简单愉快的上手PipelineDB

pipelineDB source:https://github.com/pipelinedb/pipelinedb

 

安装PipelineDB

 ./configure CFLAGS="-g -O0" --enable-cassert --prefix=/usr/local/pipelinedb_0.9.7

除了原本postgres需要安装的几个依赖包外,还需要安装ZeroMQ

make

make install 

 

套路跟Postgres一样一样的,安装完成后初始化DB,启动,登陆。PipelineDB默认带的不是postgres用户而是pipeline

[pipeline@bogon ~]$ /usr/local/pipelinedb_0.9.7/bin/psql

psql (9.5.3)

Type "help" for help.

 

pipeline=# \c

You are now connected to database "pipeline" as user "pipeline".

pipeline=#

 

创建Stream

在PipelineDB中,一个Stream就是一个FDW,其实不存储任何数据。

 

pipeline=# create stream my_stream(name text,age int,birth timestamp);

 

如果试图对stream进行查询是不被允许的:

pipeline=# select * from my_stream;

ERROR:  "my_stream" is a stream

HINT:  Streams can only be read by a continuous view's FROM clause.

被告知,只允许被continuous view 读取。

 

创建完成后,可以看见多出了一个字段"arrival_timestamp",这个就是流数据的到达时间,在sliding windows中需要用到这个时间。

pipeline=# \d my_stream

            Stream "public.my_stream"

      Column       |            Type

-------------------+-----------------------------

 name              | text

 age               | integer

 birth             | timestamp without time zone

 arrival_timestamp | timestamp with time zone

 

创建Continuous Views

pipeline=# create continuous view cv as select name,age,birth from my_stream;

CREATE CONTINUOUS VIEW

pipeline=# \d cv

           Continuous view "public.cv"

 Column |            Type             | Modifiers

--------+-----------------------------+-----------

 name   | text                        |

 age    | integer                     |

 birth  | timestamp without time zone |

 

pipeline=#

 

 

创建cv后,会附带创建一些别的东西

pipeline=# \d

                List of relations

 Schema |   Name    |      Type       |  Owner

--------+-----------+-----------------+----------

 public | cv        | continuous view | pipeline

 public | cv_mrel   | table           | pipeline

 public | cv_osrel  | stream          | pipeline

 public | cv_seq    | sequence        | pipeline

 public | my_stream | stream          | pipeline

(5 rows)

 

  1. cv  这个跟数据库中普通的View很类似,不存储任何东西,可以把他理解成一个materialized view,并且是非常高吞吐量,realtime的物化视图。
  2. cv_mrel,这个就是存储具体数据的,跟pg中的物理表是一样一样的。上面的cv就是这个物理表的一个壳子,不过这个物理表存储的内容可能是HLL格式。
  3. cv_seq,这个是给物理表创建的一个PK,看看cv_mrel发现默认会有个$pk字段。
  1. cv_osrel  这个是internal relation representing an output stream  后面会讲到。

 

插入数据到流

pipeline=# insert into my_stream(name,age,birth) values('Li.Sang',28,'1989-03-01'::timestamp);

INSERT 0 1

pipeline=# select * from cv;

  name   | age |        birth

---------+-----+---------------------

 Li.Sang |  28 | 1989-03-01 00:00:00

(1 row)

 

我们看看表中的数据:

pipeline=# select * from cv_mrel;

  name   | age |        birth        | $pk

---------+-----+---------------------+-----

 Li.Sang |  28 | 1989-03-01 00:00:00 |   1

(1 row)

 

pipeline=# insert into my_stream(name,age,birth) values('Zhang.San',30,now());

INSERT 0 1

pipeline=# select * from cv;

   name    | age |           birth

-----------+-----+----------------------------

 Li.Sang   |  28 | 1989-03-01 00:00:00

 Zhang.San |  30 | 2017-05-15 11:20:37.614901

(2 rows)

 

pipeline=# select * from cv_mrel;

   name    | age |           birth            | $pk

-----------+-----+----------------------------+-----

 Li.Sang   |  28 | 1989-03-01 00:00:00        |   1

 Zhang.San |  30 | 2017-05-15 11:20:37.614901 |   2

(2 rows)

 

 

cvcv_mrel只是多了个$pk,这是在普通情况下,数据是这样的,如果做agg可能数据存储为HLL格式.

如果对HLL感兴趣可以看看https://stefanheule.com/papers/edbt13-hyperloglog.pdf

 

 

滑动窗口

我们来看看滑动窗口,在流计算中,窗口是个很重要的东西,例如最近5分钟,最近1小时,最近1天的汇总。

pipeline=# create continuous view cv_sliding_1_minute with(sw = '1 minute')  as select time  from my_sliding_stream ;

CREATE CONTINUOUS VIEW

pipeline=# \d cv_sliding_1_minute

   Continuous view "public.cv_sliding_1_minute"

 Column |            Type             | Modifiers

--------+-----------------------------+-----------

 time   | timestamp without time zone |

 

 

上面的SQL等价于:

create continuous view cv_sliding_1_minute  as select time from my_sliding_stream where (arrival_timestamp > clock_timestamp() - interval '1 minute');

根据stream中的arrival_timestamp来判断数据的到达时间。

 

这个CV是获取最近一分钟的数据。

我们来测试一下:

pipeline=# insert into my_sliding_stream(time) values(now());

INSERT 0 1

pipeline=# select * from cv_sliding_1_minute;

            time

----------------------------

 2017-05-15 11:42:33.141251

(1 row)

 

pipeline=# insert into my_sliding_stream(time) values(now());

INSERT 0 1

pipeline=# select * from cv_sliding_1_minute;

            time

----------------------------

 2017-05-15 11:42:33.141251

 2017-05-15 11:43:21.256779

(2 rows)

 

pipeline=# insert into my_sliding_stream(time) values(now());

INSERT 0 1

pipeline=# select * from cv_sliding_1_minute;

            time

----------------------------

 2017-05-15 11:43:21.256779

 2017-05-15 11:43:59.362918

(2 rows)

 

pipeline=# select now();

              now

-------------------------------

 2017-05-15 11:44:04.015165+08

(1 row)

 

发现第一条数据 2017-05-15 11:42:33.141251已经没了。再过一会查询一下:

pipeline=# select * from cv_sliding_1_minute;

 time

------

(0 rows)

 

pipeline=# select now();

             now

------------------------------

 2017-05-15 11:46:39.50591+08

(1 row)

 

这时cv已经什么都没了。

 

很好用的TTL功能(per-row time-to-live )

pipeline=# CREATE CONTINUOUS VIEW v_ttl WITH (ttl = '10 minute', ttl_column = 'minute') AS

pipeline-#   SELECT minute(arrival_timestamp), COUNT(*) FROM my_sliding_stream GROUP BY minute;

CREATE CONTINUOUS VIEW

 

pipeline=# insert into my_sliding_stream values(now());

INSERT 0 1

pipeline=# insert into my_sliding_stream values(now());

INSERT 0 1

pipeline=# insert into my_sliding_stream values(now());

INSERT 0 1

pipeline=# select * from v_ttl;

         minute         | count

------------------------+-------

 2017-05-15 13:48:00+08 |     3

(1 row)

 

pipeline=# select now();

             now

------------------------------

 2017-05-15 13:49:07.11884+08

(1 row)

 

pipeline=# insert into my_sliding_stream values(now());

INSERT 0 1

pipeline=# select * from v_ttl;

         minute         | count

------------------------+-------

 2017-05-15 13:48:00+08 |     3

 2017-05-15 13:49:00+08 |     1

(2 rows)

 

pipeline=# select now();

              now

-------------------------------

 2017-05-15 13:50:05.236968+08

(1 row)

 

pipeline=# insert into my_sliding_stream values(now());

INSERT 0 1

pipeline=# select * from v_ttl;

         minute         | count

------------------------+-------

 2017-05-15 13:48:00+08 |     3

 2017-05-15 13:49:00+08 |     1

 2017-05-15 13:50:00+08 |     1

(3 rows)

 

pipeline=# insert into my_sliding_stream values(now());

INSERT 0 1

pipeline=# select * from v_ttl;

         minute         | count

------------------------+-------

 2017-05-15 13:48:00+08 |     3

 2017-05-15 13:49:00+08 |     1

 2017-05-15 13:50:00+08 |     2

(3 rows)

 

pipeline=#

 

讲讲TRANSFORM

 

pipeline=# create stream str1(x bigint,y text,z timestamp);

CREATE STREAM

 

pipeline=# create stream str2(x bigint,y text,z timestamp);

CREATE STREAM

 

创建对应的CV

pipeline=# create continuous view cv_1 as select x,y,z from str1;

CREATE CONTINUOUS VIEW

pipeline=# create continuous view cv_2 as select x,y,z from str2;

CREATE CONTINUOUS VIEW

 

创建TRANSFORM

pipeline=# create continuous transform tran_1 as select x,y,z from str1 then  execute procedure pipeline_stream_insert('str2');

CREATE CONTINUOUS TRANSFORM

 

pipeline=# insert into str1(x,y,z) values(1,'Hi,I from str1 msg',now());

INSERT 0 1

pipeline=# select * from cv_1;

 x |         y          |             z

---+--------------------+----------------------------

 1 | Hi,I from str1 msg | 2017-05-15 13:56:22.760362

(1 row)

 

pipeline=# select * from cv_2;

 x |         y          |             z

---+--------------------+----------------------------

 1 | Hi,I from str1 msg | 2017-05-15 13:56:22.760362

(1 row)

 

pipeline=#

 

在创建Transform用到的pipeline_stream_insertPipelineDB自己提供的一个函数,这个我们可以自己定义一个函数。

pipeline=# create table t(x bigint,y text,z timestamp);

CREATE TABLE

 

pipeline=# CREATE OR REPLACE FUNCTION insert_into_t()

pipeline-#   RETURNS trigger AS

pipeline-#   $$

pipeline$#   BEGIN

pipeline$#     INSERT INTO t (x, y,z) VALUES (NEW.x, NEW.y,NEW.z);

pipeline$#     RETURN NEW;

pipeline$#   END;

pipeline$#   $$

pipeline-#   LANGUAGE plpgsql;

CREATE FUNCTION

 

pipeline=# CREATE CONTINUOUS TRANSFORM tran_t AS

pipeline-#   SELECT x,y,z FROM str1

pipeline-#   THEN EXECUTE PROCEDURE insert_into_t();

CREATE CONTINUOUS TRANSFORM

 

pipeline=# insert into str1(x,y,z) values(10,'I want insert table t',now());

INSERT 0 1

pipeline=# select * from t;

 x  |           y           |             z

----+-----------------------+---------------------------

 10 | I want insert table t | 2017-05-15 14:01:48.17516

(1 row)

 

自己写了一个trigger,然后把数据插入到表T中。

posted @ 2017-05-15 14:15  Li.Sang  阅读(1245)  评论(0编辑  收藏  举报