import numpy as np
def AUC1(labels, preds):
"""
所有的正负样本对中,正样本排在负样本前面占样本对数的比例。
[1,1,1,1,0,0], [0.9,0.8,0.7,0.8,0.3,0.2], AUC=1
"""
pos = [i for i in range(len(labels)) if labels[i] == 1]
neg = [i for i in range(len(labels)) if labels[i] == 0]
auc = 0
for i in pos:
for j in neg:
if preds[i] > preds[j]:
auc += 1
elif preds[i] == preds[j]:
auc += 0.5
return auc / (len(pos)*len(neg))
def AUC2(labels,preds,n_bins=100):
postive_len = sum(labels)
negative_len = len(labels) - postive_len
total_case = postive_len * negative_len
pos_histogram = [0 for _ in range(n_bins)]
neg_histogram = [0 for _ in range(n_bins)]
bin_width = 1.0 / n_bins
for i in range(len(labels)):
nth_bin = int(preds[i]/bin_width)
if labels[i]==1:
pos_histogram[nth_bin] += 1
else:
neg_histogram[nth_bin] += 1
accumulated_neg = 0
satisfied_pair = 0
for i in range(n_bins):
satisfied_pair += (pos_histogram[i]*accumulated_neg + pos_histogram[i]*neg_histogram[i]*0.5)
accumulated_neg += neg_histogram[i]
return satisfied_pair / float(total_case)
if __name__ == '__main__':
y = np.array([1,0,0,0,1,0,1,0,])
pred = np.array([0.9, 0.8, 0.3, 0.1,0.4,0.9,0.66,0.7])
print(AUC1(y,pred))
print(AUC2(y,pred))
参考
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步