「专题训练」游走(BZOJ-3143)
题意与分析
定义走到每条边的期望为\(e_i\),一开始的想法是给定一个\(\large\sum_{i=1}^n e_i a_i\),求一个a的排列使得这个和最小。问题在于这样等于没对题目作分析,而且题目的难度没有被转化降低。于是(在高人指点下)我们想到,如果先求出\(e_i\),然后按照从小到大的顺序贪心的编号,问题就直接转化成求走到每个边的期望。
边的期望是一个新操作,但是其实不难:定义走到点的期望是\(f_i\),考虑一条边\((u, v)\),对于这条边而言,只有从u和从v才能走到这条边,那么它的期望就是\(\large e_i=\frac{f_u}{degree_u}+\frac{f_v}{degree_v}\)。于是问题又转化成走到各个点的期望。
如果这是个DAG,那么问题是一个dp(\(dp[j]\)表示从j到n的期望长度,\(dp[i] = \sum_{i\to j} \frac{dp[j]+1}{degree_i}\),具体问题见BZOJ-3036)。问题是这题并不是,场面有点尴尬。但是上面DAG的方程加起来共有n个,而我们要求n-1个解,这提示了我们用高斯消元解决这个问题。用高斯消元的话我们就把公式变形一下:
\[e_i = \sum_{j=1}^n p_{i,j}e_{j} , 2\le i \le n
\]
其中\(p_{i,j}\)表示从j走到i的概率,对于第一个点该式子的右边还要加上一个1(因为一开始就在这个点上了,不妨思考下平凡的情况)。这样一来就可以用高斯消元解决这一题了。
问题的逐步转化是这一题的关键。
代码
#include <bits/stdc++.h>
using namespace std;
vector<pair<int, int>> edges;
vector<int> G[505];
double arr[505][505];
int main() {
int n, m;
while (cin >> n >> m) {
for (int i = 1, u, v; i <= m; ++i) {
cin >> u >> v;
if (u > v)
swap(v, u);
edges.push_back(make_pair(u, v));
G[u].push_back(v);
G[v].push_back(u);
}
memset(arr, 0, sizeof(arr));
for (int i = 1; i <= n; ++i)
arr[i][i] = -1.0;
arr[1][n + 1] = -1.0;
for (int i = 1; i < n; i++) {
for (int j = 0; j < G[i].size(); ++j)
arr[G[i][j]][i] += 1.0 / (int)G[i].size();
}
for (int i = 1; i <= n; ++i) {
int idx = i;
for (int j = i + 1; j <= n; ++j)
if (fabs(arr[j][i]) > fabs(arr[idx][i]))
idx = j;
assert(fabs(arr[idx][i]) > 1e-10);
if (idx != i)
for (int j = i; j <= n + 1; ++j)
swap(arr[i][j], arr[idx][j]);
for (int j = 1; j <= n; ++j)
if (i != j) {
double t = arr[j][i] / arr[i][i];
for (int k = i; k <= n + 1; ++k)
arr[j][k] -= arr[i][k] * t;
}
}
/*
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n + 1; ++j) {
cout << arr[i][j] << " ";
}
cout << endl;
}
*/
double e_node[505];
double e_edge[500 * 500 / 2 + 5];
memset(e_edge, 0, sizeof(e_edge));
memset(e_node, 0, sizeof(e_node));
for (int i = 1; i <= n; ++i) {
e_node[i] = arr[i][n + 1] / arr[i][i];
}
for (int i = 0; i < edges.size(); ++i) {
e_edge[i] += e_node[edges[i].first] / G[edges[i].first].size();
if (edges[i].second != n)
e_edge[i] += e_node[edges[i].second] / G[edges[i].second].size();
}
sort(e_edge, e_edge + m);
double ans = 0;
for (int i = 0; i < m; ++i)
ans += e_edge[i] * (m - i);
cout << fixed << setprecision(3) << ans << endl;
}
return 0;
}
如非注明,原创内容遵循GFDLv1.3发布;其中的代码遵循GPLv3发布。