「赛后补题」Meeting(HDU-5521)

题意

A,B两个人分别在1和n区。每个区有若干点(区之间的点可以重复,各个区内点间的距离一致),给出区之间有联系的图以及到达所需时间。求两个人见面最短时间以及在哪个区碰面(可有多个)

分析

隐式图搜索。但是注意一点:当我们搜索过一个区之后,这个区的最短路一定是被更新完成的,最短的(只要没有负权边)。因此,我们应当对已经访问过的点加一个标记,即可极大的剪枝,加快对隐式图的Dijkstra。

另一种做法

对于每个区定义一个新的虚拟点,区中的每个点到这点的距离是给定的\(t_i\)(不去生成一个完全图)。这样求最短路后距离除以二即可。
这样的做法可能在网络流中会比较有用,值得注意。

代码

注意行末空格,会让你丢一次PE。

#include <iostream>
#include <cstring>
#include <algorithm>
#include <string>
#include <vector>
#include <set>
#include <unordered_map>
#include <queue>
#define rep(i,a,b) for(repType i=(a);i<=(b);++i)
#define per(i,a,b) for(repType i=(a);i>=(b);--i)
#define fi first
#define ZERO(x) memset(x,0,sizeof(x))
#define se second
#define PB emplace_back
#define MP make_pair
using namespace std;
typedef long long ll;
typedef int repType;

const int MAXN=2e5+5;
vector<int> ma[1000005];
vector<int> gra[MAXN];
ll cost[1000005];
ll dist[MAXN];
ll distb[MAXN],mindist,inf;
bool vis[1000005];
void dijkstra(int b, int n)
{
	ZERO(vis);
	memset(dist,0x3f,sizeof(dist));
	inf=dist[0];
	dist[b]=0;
	typedef pair<ll,int> P;
	priority_queue<P, vector<P>, greater<P> > pq;
	pq.push(MP(0,b));
	while(!pq.empty())
	{
		P now=pq.top();
		pq.pop();
		if(dist[now.se]<now.fi) continue;
/*
		printf("Point %d belongs to set: ", now.se);
		rep(i, 0, int(ma[now.se].size())-1)
		{
			cout<<ma[now.se][i]<<" ";
		}
		cout<<endl;
*/
		rep(i, 0, int(ma[now.se].size())-1) //分别属于哪些集合
		{
			if(!vis[ma[now.se][i]]) // Important here!
				vis[ma[now.se][i]]=true;
			else continue;
			/*
			printf("    Set %d has pnts:", ma[now.se][i]);
			rep(j,0,int(gra[ma[now.se][i]].size())-1)
				printf("%d ",gra[ma[now.se][i]][j]);
			cout<<endl;
			*/
				rep(j, 0, int(gra[ma[now.se][i]].size())-1) //集合分别有哪些点
				{
				int  v=gra[ma[now.se][i]][j];
				ll    w=cost[ma[now.se][i]]; // 点是啥
				if(dist[v]>dist[now.se]+w)
				{
					dist[v]=dist[now.se]+w;
					//pre[now.se]=ma[now.se][i];
					pq.push(MP(dist[v],v));
				}
			}
		}
	}
}
int main()
{
	int T; scanf("%d",&T);
	rep(kase, 1, T)
	{
		int n,m; scanf("%d%d", &n,&m);
		rep(i,1,n) ma[i].clear();
		rep(i,1,m) gra[i].clear();
		rep(i,1,m)
		{
			int s; scanf("%lld%d", &cost[i], &s);
			rep(j,1,s)
			{
				int tmp; scanf("%d",&tmp);
				ma[tmp].PB(i);  // 元素分别属于第几块
				gra[i].PB(tmp); // 第几块 哪些元素
			}
		}
		
                dijkstra(1,n);
		memcpy(distb,dist,sizeof(dist));
		dijkstra(n,n);
		mindist=inf;
		vector<int> pnt;
		
                rep(i,1,n)
		{
			ll tmp=max(distb[i],dist[i]);
			if(tmp==inf) continue;
			if(tmp<mindist)
			{
				mindist=tmp;
				pnt.clear(); pnt.PB(i);
			}
			else if(tmp==mindist)
			{
				pnt.PB(i);
			}
		}
		printf("Case #%d: ",kase);
		if(pnt.size()==0)
		{
			printf("Evil John\n");
		}
		else
		{
			printf("%lld\n",mindist);
			rep(i,0,int(pnt.size())-1)
			{
				printf("%d",pnt[i]);
				printf("%s",i==int(pnt.size())-1?"\n":" ");
			}
		}
	}
	return 0;
}

posted @ 2018-10-08 01:31  ISoLT  阅读(127)  评论(0编辑  收藏  举报