「日常训练」Magic Stones(CodeForces-1110E)

题意

给定两个数组c和t,可以对c数组中的任何元素变换\(c_i\)​成\(c_{i+1}+c_{i-1}-c_i\)​,问c数组在若干次变换后能否变换成t数组。

分析

这种魔法题目我是同样的没做过。Editorial里说用差分来能够看出思路。问题是,如何能够想到差分来做?因为它的变换就是相邻的数的加减法,那么想要找到思路的突破口必须也得从这里突破。
考虑变换前后的数组:
原来:\(a_{i-1}, a_i, a_{i+1}\)
之后:\(a_{i-1}, a_{i-1}+a_{i+1}-a_i,a_{i+1}\)
观察差分,会发现差分从\(a_i-a_{i-1}, a_{i+1}-a_i\)变成了\(a_{i+1}-a_i, a_i-a_{i-1}\)
这意味着什么?差分交换了位置。进一步观察推理可以发现,无论怎么操作,最后你做这个变换就是在交换差分位置。
于是问题得到解答,具体见代码。
一道考察思维的题目。

代码

#include <bits/stdc++.h>

#define INF 0x3f3f3f3f
#define PB emplace_back
#define MP make_pair
#define fi first
#define se second
#define rep(i,a,b) for(repType i=(a); i<=(b); ++i)
#define per(i,a,b) for(repType i=(a); i>=(b); --i)
#define ZERO(x) memset(x, 0, sizeof(x))
#define MS(x,y) memset(x, y, sizeof(x))
#define ALL(x) (x).begin(), (x).end()

#define QUICKIO                  \
    ios::sync_with_stdio(false); \
    cin.tie(0);                  \
    cout.tie(0);
#define DEBUG(...) fprintf(stderr, __VA_ARGS__), fflush(stderr)

using namespace std;
using pi=pair<int,int>;
using repType=int;
using ll=long long;
using ld=long double;
using ull=unsigned long long;

const int MAXN = 100005;
int arra[MAXN], arrb[MAXN];
int main()
{
	int n; cin>>n;
	vector<int> veca, vecb;
	rep(i,1,n)
	{
		cin>>arra[i];
		if(i!=1) veca.PB(arra[i]-arra[i-1]);
	}
	rep(i,1,n)
	{
		cin>>arrb[i];
		if(i!=1) vecb.PB(arrb[i]-arrb[i-1]);
	}
	sort(ALL(veca));
	sort(ALL(vecb));
	bool ok=true;
	rep(i,0,n-2)
	{
		if(veca[i]!=vecb[i])
		{
			ok=false;
			break;
		}
	}
	
	if(ok && arra[1]==arrb[1]) cout<<"Yes"<<endl;
	else cout<<"No"<<endl;
	return 0;
}
posted @ 2019-02-09 23:45  ISoLT  阅读(205)  评论(0编辑  收藏  举报