Pytorch:反transform操作,实现从tensor转成PIL image

该代码为transforms的反函数,实现从tensor转成PIL image,用于在框架的enumerate迭代中的中间图片可视化。

代码思想如下,可以根据具体情况和需要进行修改

def transform_invert(img_, transform_train):
    """
    将data 进行反transfrom操作
    :param img_: tensor
    :param transform_train: torchvision.transforms
    :return: PIL image
    """
    if 'Normalize' in str(transform_train):
        norm_transform = list(filter(lambda x: isinstance(x, transforms.Normalize), transform_train.transforms))
        mean = torch.tensor(norm_transform[0].mean, dtype=img_.dtype, device=img_.device)
        std = torch.tensor(norm_transform[0].std, dtype=img_.dtype, device=img_.device)
        img_.mul_(std[:, None, None]).add_(mean[:, None, None])

    img_ = img_.transpose(0, 2).transpose(0, 1)  # C*H*W --> H*W*C
    img_ = np.array(img_) * 255

    if img_.shape[2] == 3:
        img_ = Image.fromarray(img_.astype('uint8')).convert('RGB')
    elif img_.shape[2] == 1:
        img_ = Image.fromarray(img_.astype('uint8').squeeze())
    else:
        raise Exception("Invalid img shape, expected 1 or 3 in axis 2, but got {}!".format(img_.shape[2]) )

    return img_

 

posted @ 2020-07-23 17:06  龙雪  阅读(2304)  评论(0编辑  收藏  举报