Saito Asuka saiko!!!

有些走累了呢 有些走累了呢 虽然以那麼平凡的表现 来形容人生的漫长道路 想稍稍休息下呢 想稍稍休息下呢 时间每分每刻都这样残酷 将我紧拖著前行...

洛谷P1119|灾后重建|最短路|Floyd|Floyd的拓展

题目描述

分析

考虑本题:
只通过修好的前几个村庄,从i->j的最短路,联想到
Flyod算法:
初始化:

f[][]=INF;
f[i][i]=0; 
for(int k=1;k<=n;k++)
	for(int i=1;i<=n;i++)
		for(int j=1;j<=n;j++)
			dist[i][j]=min(dist[i][j],dist[i][k]+dist[k][j]);

考虑FLyod算法意义:
k为中转点,i为起点,j为终点
起点i->j如果只经过前k个点的最短距离
考虑本题:
因为只能经过修好的前几个村庄,则刚好对应了Floyd算法的k的意义。
因为询问的t是递增的,所以不用进行排序。
数据结构:
利用了类似栈的思想(程序里面的head实质上是tail):
因为t(包括每个村庄和询问)全是递增的,所以直接用栈首表示当前的时间的下标,如果当前下标的时间小于询问时间,则将中间断点增加一个

代码

#include <cstdio>
#include <iostream>
using namespace std;
const int maxn=205;
const int INF=9999999;
int n,m;
int dist[maxn][maxn],ct[maxn]/*完成的时间*/;
int head=0/*表示前head个村庄重建*/;
void init(){
	scanf("%d%d",&n,&m);
	for(int i=0;i<n;i++) scanf("%d",&ct[i]);
	for(int i=0;i<n;i++)
		for(int j=0;j<n;j++) dist[i][j]=INF;
	for(int i=0;i<n;i++) dist[i][i]=0;
	for(int i=1;i<=m;i++){
		int u,v,w;scanf("%d%d%d",&u,&v,&w);
		dist[u][v]=dist[v][u]=w;
	}
}
void Floyd(int k){
	for(int i=0;i<n;i++)
		for(int j=0;j<n;j++)
			dist[i][j]=dist[j][i]=min(dist[i][j],dist[i][k]+dist[k][j]);
}
void solve(){
	int q;scanf("%d",&q);
	while(q--){
		int u,v,t;scanf("%d%d%d",&u,&v,&t);
		while(ct[head]<=t&&head<n){//当前的时间足以让下一个修路 
			Floyd(head);
			head++;
		}
		if(ct[u]>t||ct[v]>t) printf("%d\n",-1);
		else printf("%d\n",dist[u][v]==INF?-1:dist[u][v]);
	}
}
int main(){
	init();
	solve();
	return 0;
}

posted @ 2018-11-08 20:01  斋藤飞鸟  阅读(169)  评论(0编辑  收藏  举报
动画加载完毕