10.15T1 容斥原理+二项式定理优化

 

 

这题其实一眼就知道肯定要容斥了,分为行列单独容斥,最后交叉 的时候容斥一下就有70分了(暴力容斥)

70分题解:

code:

 1 #include<iostream>
 2 #include<cstdio>
 3 #define N 5000006
 4 using namespace std;
 5 const long long mod=998244353;
 6 long long n,k;
 7 long long jie[N],ci[N],c[3001][3001];
 8 void pre() {
 9     ci[0]=1;
10     for(int i=1; i<=n*n; i++)ci[i]=ci[i-1]*k%mod;
11     for (int i=0; i<=n; i++)
12         for (int j=0; j<=i; j++)
13             if (j==0||i==j) c[i][j]=1;
14             else c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
15 }
16 int main() {
17 //    freopen("magic.in","r",stdin);
18 //    freopen("magic.out","w",stdout);
19     cin>>n>>k;
20     pre();
21     long long ans=0;
22     for(long long i=1; i<=n; i++) {
23         if(i&1) {
24             ans+=((ci[(n-i)*n]*c[n][i])%mod*ci[i])%mod;
25             ans+=mod;
26             ans%=mod;
27         } else {
28             ans-=((ci[(n-i)*n]*c[n][i])%mod*ci[i])%mod;
29             ans+=mod;
30             ans%=mod;
31         }
32     }
33     ans*=2;
34     for(long long i=1; i<=n; i++) {
35         for(long long j=1; j<=n; j++) {
36             if((i+j)&1) {
37                 ans+=(ci[((n-(i+j))*n)+i*j]*c[n][i])%mod*c[n][j]%mod*k%mod;
38                 ans%=mod;
39             } else {
40                 ans-=(ci[((n-(i+j))*n)+i*j]*c[n][i])%mod*c[n][j]%mod*k%mod;
41                 ans=(ans+mod)%mod;
42             }
43         }
44     }
45     cout<<ans;
46     return 0;
47 }

100分:

官方code:

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cmath>
 5 #include<algorithm>
 6 #include<set>
 7 #include<queue>
 8 #include<ctime>
 9 #define MAXN 200005
10 #define ll long long
11 #define maxn 15
12 #define maxs 1000005
13 #define inf 1e9
14 #define eps 1e-9
15 using namespace std;
16 inline char gc() {
17     static char now[1<<16],*S,*T;
18     if (T==S) {
19         T=(S=now)+fread(now,1,1<<16,stdin);
20         if (T==S) return EOF;
21     }
22     return *S++;
23 }
24 inline ll readlong() {
25     ll x=0,f=1;
26     char ch=getchar();
27     while(ch<'0'||ch>'9') {
28         if(ch=='-')f=-1;
29         ch=getchar();
30     }
31     while(ch>='0'&&ch<='9') {
32         x*=10;
33         x+=ch-'0';
34         ch=getchar();
35     }
36     return x*f;
37 }
38 const int N=1000005;
39 const int mod=998244353;
40 ll res,ans,n,k;
41 ll fac[N],inv[N];
42 void update(ll &x,ll y) {
43     x+=y;
44     if(x<0) {
45         x+=mod;
46     }
47     if(x>=mod) {
48         x-=mod;
49     }
50 }
51 ll ksm(ll x,ll k) {
52     update(x,0);
53     ll ret=1;
54     ll ans=x;
55     while(k) {
56         if(k&1) {
57             ret=ret*ans%mod;
58         }
59         ans=ans*ans%mod;
60         k>>=1;
61     }
62     return ret;
63 }
64 ll calc(ll x,ll y) {
65     if(x<y) {
66         return 0;
67     }
68     if(x==y) {
69         return 1;
70     }
71     return 1ll*fac[x]*inv[y]%mod*inv[x-y]%mod;
72 }
73 int main() {
74     freopen("magic.in","r",stdin);
75     freopen("magic.out","w",stdout);
76     n=readlong();
77     k=readlong();
78     fac[0]=1;
79     for(int i=1; i<=n; i++)fac[i]=fac[i-1]*i%mod;
80     inv[n]=ksm(fac[n],mod-2);
81     for(int i=n-1; i>=0; i--)inv[i]=inv[i+1]*(i+1)%mod;
82     for(int i=1; i<=n; i++) {
83         int a=1ll*calc(n,i)*ksm(-1,i+1)%mod;
84         int x=ksm(k,(1ll*n*(n-i)+i)%(mod-1));
85         update(ans,1ll*a*x%mod);
86     }
87     ans=2*ans%mod;
88     for(int i=0; i<n; i++) {
89         int tmp=mod-ksm(k,i);
90         int x=(ksm(tmp+1,n)+mod-ksm(tmp,n))%mod;
91         int a=1ll*calc(n,i)*ksm(-1,i+1)%mod;
92         update(res,1ll*a*x%mod);
93     }
94     res=k*res%mod;
95     printf("%lld\n",(ans+res)%mod);
96     return 0;
97 }

本人code:

 1 #include<iostream>
 2 #include<cstdio>
 3 #define N 1000005
 4 using namespace std;
 5 const long long mod=998244353;
 6 long long n,k;
 7 long long jie[N],inv[N];
 8 long long ksm(long long a,long long b) {
 9     long long ans=1;
10     for(; b; b>>=1) {
11         if(b&1) {
12             ans*=a;
13             ans%=mod;
14         }
15         a*=a;
16         a%=mod;
17     }
18     return ans;
19 }
20 long long read() {
21     long long x=0,f=1;
22     char c=getchar();
23     while(!isdigit(c)) {
24         if(c=='-')f=-1;
25         c=getchar();
26     }
27     while(isdigit(c)) {
28         x=(x<<3)+(x<<1)+c-'0';
29         c=getchar();
30     }
31     return x*f;
32 }
33 long long C(long long a,long long b) {
34     return (((jie[a]*inv[b])%mod*inv[a-b])%mod+mod)%mod;
35 }
36 void pre() {
37     jie[0]=1;
38     for(long long i=1; i<=n; i++)jie[i]=jie[i-1]*i%mod;
39     inv[n]=ksm(jie[n],mod-2);
40     for(long long i=n-1; i>=0; i--)inv[i]=inv[i+1]*(i+1)%mod;
41 }
42 int main() {
43     n=read(),k=read();
44     pre();
45     long long ans=0;
46     for(long long i=1; i<=n; i++) {
47         if(i&1) {
48             ans+=C(n,i)*ksm(k,(n-i)*n)%mod*ksm(k,i);
49             ans+=mod;
50             ans%=mod;
51         } else {
52             ans-=C(n,i)*ksm(k,(n-i)*n)%mod*ksm(k,i);
53             ans+=mod;
54             ans%=mod;
55         }
56     }
57     ans*=2;
58     ans%=mod;
59     for(long long i=0; i<n; i++) {
60         if(i&1) {
61             long long temp1=C(n,i);
62             long long temp2=(1-ksm(k,i)+2*mod)%mod;
63             long long temp3=ksm(k,i);
64             temp2=ksm(temp2,n);
65             temp3=ksm(temp3,n);
66             if(n&1){
67                 temp3=-temp3;
68             }
69             ans+=k*(temp1*(temp2-temp3)%mod+mod)%mod;
70             ans+=mod;
71             ans%=mod;
72         } else {
73             long long temp1=C(n,i);
74             long long temp2=(1-ksm(k,i)+2*mod)%mod;
75             long long temp3=ksm(k,i);
76             temp2=ksm(temp2,n);
77             temp3=ksm(temp3,n);
78             if(n&1){
79                 temp3=-temp3;
80             }
81             ans-=k*(temp1*(temp2-temp3)%mod+mod)%mod;
82             ans+=mod;
83             ans%=mod; 
84         }
85     }
86     cout<<ans;
87     return 0;
88 }

over

posted @ 2018-10-15 16:24  saionjisekai  阅读(106)  评论(0编辑  收藏  举报