[codeforces940E]Cashback

题目链接

题意是说将$n$个数字分段使得每段贡献之和最小,每段的贡献为区间和减去前$\left \lfloor \frac{k}{c}\right \rfloor$小的和。

仔细分析一下可以知道,减去$2$个可以分成减去$2$次$1$个,所以就可以设一个$dp:$$dp[i]$为$1-i$位的最小和.

$dp[i]=dp[i-1]+a[i]$,表示第$i$个单独分成一组。

$dp[i]=dp[i-m]+sum[i]-sum[i-m]-Q(i-m+1,i)$,表示第$i-c$到第$i$个分成一组,就要减去区间内的最小值。

所以ST表预处理一下

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 typedef long long ll;
 4 const int maxn = 1e5 + 10;
 5 ll dp[maxn], lg[maxn], Min[maxn][20], a[maxn], sum[maxn];
 6 ll Q(int l, int r) {
 7     int k = lg[r - l + 1];
 8     return min(Min[l][k], Min[r - (1 << k) + 1][k]);
 9 }
10 int main() {
11     int n, m;
12     scanf("%d%d", &n, &m);
13     for (int i = 1; i <= n; i++)
14         scanf("%lld", &a[i]), sum[i] = sum[i - 1] + a[i];
15     lg[0] = -1;
16     for (int i = 1; i <= n; i++) {
17         if ((i & (i - 1)) == 0)
18             lg[i] = lg[i - 1] + 1;
19         else
20             lg[i] = lg[i - 1];
21     }
22     for (int i = 1; i <= n; i++)
23         Min[i][0] = a[i];
24     for (int j = 1; (1 << j) <= n; j++)
25         for (int i = 1; i + (1 << j) - 1 <= n; i++)
26             Min[i][j] = min(Min[i][j - 1], Min[i + (1 << (j - 1))][j - 1]);
27     memset(dp, 127, sizeof(dp));
28     dp[0] = 0;
29     for (int i = 1; i <= n; i++) {
30         dp[i] = dp[i - 1]+a[i];
31         if (i - m >= 0)
32             dp[i] = min(dp[i], dp[i - m] + sum[i] - sum[i - m] - Q(i - m + 1, i));
33     }
34     printf("%lld\n", dp[n]);
35 }

 

posted @ 2019-10-15 19:28  祈梦生  阅读(175)  评论(0编辑  收藏  举报