[Bzoj1009][HNOI2008]GT考试(动态规划)

题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1009

显而易见的动态规划加矩阵快速幂,不过转移方程不怎么好想,dp[i][j]表示长度为i的准考证号后j位与不吉利数字的前j位相同的方案数。则:

转移方程为$dp[i][j]=\sum_{k=0}^{m-1}dp[i-1][k]*g[k][j]$

答案为:$ans=\sum_{i=0}^{m}dp[n][i]$

g[i][j]表示长度为i的后缀变成长度为j的后缀的方案数。

而g数组可以用kmp预处理出来

 

附上洛谷40分不用矩阵优化的代码

 1  1 #include<bits/stdc++.h>
 2  2 using namespace std;
 3  3 typedef long long ll;
 4  4 typedef unsigned long long ull;
 5  5 const int maxn = 6e6 + 10;
 6  6 ll Next[25];
 7  7 ll g[25][25];
 8  8 ll dp[maxn][25];
 9  9 char s[25];
10 10 void getN(int n) {
11 11     Next[0] = -1;
12 12     int i = 0, j = -1;
13 13     while (i < n) {
14 14         if (j == -1 || s[i] == s[j])
15 15             Next[++i] = ++j;
16 16         else
17 17             j = Next[j];
18 18     }
19 19 }
20 20 int main() {
21 21     ll n, m, mod;
22 22     scanf("%lld%lld%lld", &n, &m, &mod);
23 23     scanf("%s", s);
24 24     getN(m);
25 25     Next[0] = 0;
26 26     for (int i = 0; i < m; i++) {
27 27         for (int j = '0'; j <= '9'; j++) {
28 28             int t = i;
29 29             while (t&& s[t] != j)
30 30                 t = Next[t];
31 31             if (s[t] == j)
32 32                 t++;
33 33             g[i][t]++;
34 34         }
35 35     }
36 36     dp[0][0] = 1;
37 37     for (int i = 1; i <= n; i++) {
38 38         for (int j = 0; j < m; j++) {
39 39             for (int k = 0; k < m; k++) {
40 40                 dp[i][j] = (dp[i][j] + dp[i - 1][k] * g[k][j]) % mod;
41 41             }
42 42         }
43 43     }
44 44     ll ans = 0;
45 45     for (int i = 0; i < m; i++)
46 46         ans = (ans + dp[n][i]) % mod;
47 47     printf("%lld\n", ans);
48 48 }
View Code

以及正解

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 typedef long long ll;
 4 typedef unsigned long long ull;
 5 const int maxn = 6e6 + 10;
 6 ll Next[25];
 7 ll n, m, mod;
 8 ll dp[25][25];
 9 char s[25];
10 void getN(int n) {
11     Next[0] = -1;
12     int i = 0, j = -1;
13     while (i < n) {
14         if (j == -1 || s[i] == s[j])
15             Next[++i] = ++j;
16         else
17             j = Next[j];
18     }
19 }
20 struct matrix {
21     ll cnt[25][25];
22     matrix() { memset(cnt, 0, sizeof(cnt)); }
23     matrix operator *(const matrix a)const {
24         matrix ans;
25         for (int i = 0; i <= m; i++) {
26             for (int j = 0; j <= m; j++) {
27                 ans.cnt[i][j] = 0;
28                 for (int k = 0; k <= m; k++)
29                     ans.cnt[i][j] = (ans.cnt[i][j] + cnt[i][k] * a.cnt[k][j]) % mod;
30             }
31         }
32         return ans;
33     }
34 };
35 matrix powM(matrix a, int b) {
36     matrix ans = matrix();
37     for (int i = 0; i <= m; i++)
38         ans.cnt[i][i] = 1;
39     while (b) {
40         if (b & 1)
41             ans = ans * a;
42         a = a * a;
43         b /= 2;
44     }
45     return ans;
46 }
47 int main() {
48     matrix g, ans, dp = matrix();
49     scanf("%lld%lld%lld", &n, &m, &mod);
50     scanf("%s", s);
51     getN(m);
52     Next[0] = 0;
53     memset(g.cnt, 0, sizeof(g.cnt));
54     for (int i = 0; i < m; i++) {
55         for (int j = '0'; j <= '9'; j++) {
56             int t = i;
57             while (t&& s[t] != j)
58                 t = Next[t];
59             if (s[t] == j)
60                 t++;
61             g.cnt[i][t]++;
62         }
63     }
64     dp.cnt[0][0] = 1;
65     ans = powM(g, n);
66     ans = dp * ans;
67     ll sum = 0;
68     for (int i = 0; i < m; i++)
69         sum = (sum + ans.cnt[0][i]) % mod;
70     printf("%lld\n", sum);
71 }
View Code

 

posted @ 2019-07-03 14:15  祈梦生  阅读(153)  评论(0编辑  收藏  举报