netsniff恶意流量识别和匹配解读
代码整体框架
流量扫描函数调用
加载配置文件的代码调用
获取扫描的条数
重点匹配函数
流量eg:'\x00\x04\x00\x01\x00\x06\x00\x16>\x10\x1d>SW\x08\x00E\x00\x00\xbf\xb3\x1a@\x00@\x06\x03\xac\xac\x18\x0e.ddd\xc8\xed\xea\x00P\x04FF\xfa\x97\xc3\x8a\xedP\x18\x00\xe5\x84$\x00\x00
GET /latest/meta-data/region-id HTTP/1.1\r\nHost: 100.100.100.200\r\nAccept: /\r\nContent-Type: application/json; charset=utf-8\r\nAgent: linux/1.0.2.580\r\n\r\n'
前面是ip tcp的头部,后面则是http的部分。
首先判断是否是http部分,如果是扫描进入http部分,我们就开始匹配有没有出现下图中子串出现在流量里面,如果存在就返回对应的位置index,进行下一步的判断或者下一个包的扫描。因此在恶意流量匹配环节,和maltrail最大的不同就是更换了正则匹配的逻辑
static int matchFound(void *user, void *tree, int index, void *data, void *neglist) {
char logbuf[256];
struct BnfaResponse *resp = (struct BnfaResponse *) data;
match_item *entry = (match_item *) user;
// WRITE_LOG(" -- Regex::Bnfa::MatchFound | index %ld", r->index);
// save matched info
(resp->matchedCount)++;
resp->matchedEntries[resp->matchedCount - 1] = entry;
printf("MatchFound line %d, index %d\n", entry->idx, index);
#if 0
if (r->isOnBlackList)
{
resp->isOnBlackList = true;
return 1;
}
else
{
resp->isOnBlackList = false;
}
#endif
// 流量eg:'\x00\x04\x00\x01\x00\x06\x00\x16>\x10\x1d>SW\x08\x00E\x00\x00\xbf\xb3\x1a@\x00@\x06\x03\xac\xac\x18\x0e.ddd\xc8\xed\xea\x00P\x04FF\xfa\x97\xc3\x8a\xedP\x18\x00\xe5\x84$\x00\x00
//data GET /latest/meta-data/region-id HTTP/1.1\r\nHost: 100.100.100.200\r\nAccept: /\r\nContent-Type: application/json; charset=utf-8\r\nAgent: linux/1.0.2.580\r\n\r\n'
//idx是规则配置的编号 匹配不到后面的
if (entry->idx < (int) HTP_TAG_END) // http
{
switch (entry->idx) {
case HTP_TAG_HTTP:
// index为 HTTP/ 这标签的后一位 if语句就是判断是否是http打头
// entry->length_of_tag user对象传进来获取的
if (index == entry->length_of_tag) {
resp->startWithHTTP = true;
return SEARCH_CONTINUE;
}
break;
case method_post:
case method_get:
case method_connect:
if (index < resp->dataLength) {
resp->hasHost = true;
// 获得路径/latest/meta-data/region-id的其实位置
resp->path = resp->data + index;
resp->hasPath = true;
}
break;
case WHITELIST_cgi:
case WHITELIST__vti_bin:
case WHITELIST_bin:
case WHITELIST_bios:
case WHITELIST_pc:
case WHITELIST_pub:
case WHITELIST_scripts:
case sig:
resp->hasPath = false;
case SUS_apk:
case SUS_chm:
case SUS_dll:
case SUS_egg:
case SUS_exe:
case SUS_hta:
case SUS_hwp:
case SUS_pac:
case SUS_ps1:
case SUS_scr:
case SUS_sct:
case SUS_xpi:
if (resp->hasPath){
int len = snprintf(logbuf,
256,
"TRAIL.HTTP,%s:%d,%s:%d,%d,direct download (suspicious)",
resp->pkt->src_ip,
resp->pkt->src_port,
resp->pkt->dst_ip,
resp->pkt->dst_port,
entry->idx);
fwrite(logbuf, 1, len, resp->pkt->context->tcp_syn_log);
return SEARCH_CONTINUE;
}
case PATH_START_HTTP:
resp->hasBadPath = true;
break;
case path_probe:
case path_proxy:
case path_echo:
case path_check:
if (resp->hasBadPath){
int len = snprintf(logbuf,
256,
"TRAIL.HTTP,%s:%d,%s:%d,%d,potential proxy probe (suspicious)",
resp->pkt->src_ip,
resp->pkt->src_port,
resp->pkt->dst_ip,
resp->pkt->dst_port,
entry->idx);
fwrite(logbuf, 1, len, resp->pkt->context->tcp_syn_log);
return SEARCH_CONTINUE;
}
break;
case GENERIC_SINKHOLE_START:
case GENERIC_SINKHOLE_2:
case GENERIC_SINKHOLE_3:
case GENERIC_SINKHOLE_4:
case GENERIC_SINKHOLE_5:
case GENERIC_SINKHOLE_6:
case GENERIC_SINKHOLE_7:
case GENERIC_SINKHOLE_8:
case GENERIC_SINKHOLE_9:
case GENERIC_SINKHOLE_10:
case GENERIC_SINKHOLE_11:
case GENERIC_SINKHOLE_12:
case GENERIC_SINKHOLE_13:
case GENERIC_SINKHOLE_END:
if (resp->startWithHTTP) {
// log_event((sec, usec, src_ip, src_port, dst_ip, dst_port, PROTO.TCP, TRAIL.HTTP, trail, "sinkhole response (malware)", "(heuristic)"), packet)
int len = snprintf(logbuf,
256,
"TRAIL.HTTP,%s:%d,%s:%d,%d,sinkhole response (malware)",
resp->pkt->src_ip,
resp->pkt->src_port,
resp->pkt->dst_ip,
resp->pkt->dst_port,
entry->idx);
fwrite(logbuf, 1, len, resp->pkt->context->tcp_syn_log);
return SEARCH_CONTINUE;
}
break;
case HTP_TAG_CONTENTTYPE:
// 如果小于整包长度
if (index < resp->dataLength) {
//
resp->hasContentType = true;
// 下面的data是 tcp和ip的之后的 负载数据
resp->contentType = resp->data + index;//才是指向index当前的数据
resp->lengthOfContentType = getStringLength(resp->contentType, resp->dataLength - index + 1);
}
break;
case SUSPICIOUS_CONTENT_START:
case SUSPICIOUS_CONTENT_2:
case SUSPICIOUS_CONTENT_3:
case SUSPICIOUS_CONTENT_4:
case SUSPICIOUS_CONTENT_5:
case SUSPICIOUS_CONTENT_6:
case SUSPICIOUS_CONTENT_7:
case SUSPICIOUS_CONTENT_8:
case SUSPICIOUS_CONTENT_END:
if (resp->hasContentType) {
// log_event((sec, usec, src_ip, src_port, dst_ip, dst_port, PROTO.TCP, TRAIL.HTTP, content_type, "content type (suspicious)", "(heuristic)"), packet)
int len = snprintf(logbuf,
256,
"TRAIL.HTTP,%s:%d,%s:%d,%d,content type (suspicious)",
resp->pkt->src_ip,
resp->pkt->src_port,
resp->pkt->dst_ip,
resp->pkt->dst_port,
entry->idx);
fwrite(logbuf, 1, len, resp->pkt->context->tcp_syn_log);
return SEARCH_CONTINUE;
}
break;
case HTP_TAG_HOST:
if (resp->hasHost) {
// data+index是指向host的后一位,获取到host ip第一位的指针
resp->host_ip = resp->data+index;
resp->hostIpIndex = getStringLength(resp->host_ip,resp->dataLength-index+1);
string hostIP;
int index = 0;
while (index<resp->hostIpIndex){
// 如果遇到大写字母变成小写字母
hostIP+=strlwr(resp->host_ip);
resp->host_ip++;
index++;
}
if (endsWith(hostIP,":80")==1){
hostIP = hostIP[sizeof(hostIP)-3];
}
// 遍历trails log输出。host and host[0].isalpha() and dst_ip in trails
auto ret = g_ip4MalwareAddrs.find(resp->pkt->raw_dst);
if (ret != g_ip4MalwareAddrs.end()){
int len = snprintf(logbuf,
256,
"tcpsyn,%s:%d,%s:%d,%d",
resp->pkt->src_ip,
resp->pkt->src_port,
resp->pkt->dst_ip,
resp->pkt->dst_port,
entry->idx);
fwrite(logbuf, 1, len, pkt->context->tcp_syn_log);
return SEARCH_CONTINUE;
}else{
resp->IsIotMalware = true;
}
}
break;
case Host_arm:
case Host_m68k:
case Host_mips:
case Host_mpsl:
case Host_powerpc:
case Host_ppc:
case Host_x86:
case Host_x32:
case Host_x64:
case Host_i586:
case Host_i686:
case Host_sparc:
case Host_sh:
case Host_yarn:
case Host_zte:
if (resp->IsIotMalware){
int len = snprintf(logbuf,
256,
"tcpsyn,%s:%d,%s:%d,%d,potential iot-malware download (suspicious)",
resp->pkt->src_ip,
resp->pkt->src_port,
resp->pkt->dst_ip,
resp->pkt->dst_port,
entry->idx);
fwrite(logbuf, 1, len, pkt->context->tcp_syn_log);
}
break;
case HTP_TAG_UA:
break;
case HTP_TAG_TITLE_BEGIN:
case HTP_TAG_TITLE_END:resp->hasHTTPTitle = true;
return SEARCH_CONTINUE;
break;
case SEIZED_DOMAIN_BEGIN:
case SEIZED_DOMAIN_END:
if (resp->hasHTTPTitle) {
// log_event((sec, usec, src_ip, src_port, dst_ip, dst_port, PROTO.TCP, TRAIL.HTTP, title, "seized domain (suspicious)", "(heuristic)"), packet)
int len = snprintf(logbuf,
256,
"TRAIL.HTTP,%s:%d,%s:%d,%d,seized domain (suspicious)",
resp->pkt->src_ip,
resp->pkt->src_port,
resp->pkt->dst_ip,
resp->pkt->dst_port,
entry->idx);
fwrite(logbuf, 1, len, resp->pkt->context->tcp_syn_log);
return SEARCH_CONTINUE;
}
break;
default:;
}
} // else if
if (resp->matchedCount == REGEX_MAX_MATCH_ITEM) {
//WRITE_LOG(" -- Regex::Bnfa::MatchFound | Can't save more info, matched index", r->index);
return SEARCH_REACHMAX;
}
return 0;
}
获取/r /n的位置信息index
static int getStringLength(const uint8_t *startpos, int totalLength) {
if (totalLength <= 0)
return 0;
for (int i = 0; i < totalLength; i++) {
if (startpos[i] == '\r' ||
startpos[i] == '\n' ||
startpos[i] == '\0')
return i;
}
return totalLength;
}