sadier

  博客园 :: 首页 :: 博问 :: 闪存 :: 新随笔 :: 联系 :: 订阅 订阅 :: 管理 ::
Singleton模式

  按照设计模式中的定义,Singleton模式的用途是“ensure a class has only one instance, and provide a global point of access to it(确保每个类只有一个实例,并提供它的全局访问点)”。

  它可以解决什么问题,或者换句话说,我们使用它的动机是什么?几乎在每个应用程序中,都需要有一个从中进行全局访问和维护某种类型数据的区域。在面向对象的(OO)系统中也有这种情况,在此类系统中,在任何给定时间只应运行一个类或某个类的一组预定义数量的实例。例如,当使用某个类来维护增量计数器时,此简单的计数器类需要跟踪在多个应用程序领域中使用的整数值。此类需要能够增加该计数器并返回当前的值。对于这种情况,所需的类行为应该仅使用一个类实例来维护该整数,而不是使用其它类实例来维护该整数。

   最初,人们可能会试图将计数器类实例只作为静态全局变量来创建。这是一种通用的方法,但实际上只解决一部分问题;它解决了全局可访问性问题,但没有采取任何措施来确保在任何给定的时间只运行一个类实例。应该由类本身来负责只使用一个类实例,而不是由类用户来负责。应该始终不要让类用户来监视和控制运行的类实例的数量。

  所需要的是使用某种方法来控制如何创建类实例,然后确保在任何给定的时间只创建一个类实例。这会确切地给我们提供所需的行为,并使客户端不必了解任何类细节。
  逻辑模型

  Singleton模型非常简单直观。(通常)只有一个Singleton实例。客户端通过一个已知的访问点来访问Singleton实例。在这种情况下,客户端是一个需要访问唯一Singleton实例的对象。图1以图形方式显示此关系。

 

  物理模型

  Singleton模式的物理模型也是非常简单的。但是,随着时间的推移,实现Singleton的方式也略有不同。让我们看一下原始的GoFSingleton实现。图2显示按设计模式所定义的原始Singleton模式的UML模型。

 

  我们看到的是一个简单的类图表,显示有一个Singleton对象的私有静态属性以及返回此相同属性的公共方法Instance()。这实际上是Singleton的核心。还有其他一些属性和方法,用于说明在该类上允许执行的其他操作。为了便于此次讨论,让我们将重点放在实例属性和方法上。

  客户端仅通过实例方法来访问任何Singleton实例。此处没有定义创建实例的方式。我们还希望能够控制如何以及何时创建实例。在OO开发中,通常可以在类的构造函数中最好地处理特殊对象的创建行为。这种情况也不例外。我们可以做的是,定义我们何时以及如何构造类实例,然后禁止任何客户端直接调用该构造函数。这是在Singleton构造中始终使用的方法。让我们看一下设计模式中的原始示例。通常,将下面所示的C++Singleton示例实现代码示例视为Singleton的默认实现。本示例已移植到很多其他编程语言中,通常它在任何地方的形式与此几乎相同。

  C++ Singleton示例实现代码

 
//Declaration
class Singleton{
public:
static Singleton* Instance();
protected:
Singleton();
private:
static Singleton* _instance;
}

// Implementation
Singleton* Singleton::_instance = 0;

Singleton* Singleton::Instance() {
if (_instance == 0) {
_instance = new Singleton;
}
return _instance;
}

  让我们先花点时间分析一下此代码。该简单类有一个成员变量,此变量是指向该类自身的指针。注意,构造函数是受保护的,并且只有公共方法才是实例方法。在实例方法实现中,有一个控制块(if),它检查成员变量是否已初始化,如果没有的话,则创建一个新实例。控制块中这种惰性初始化意味着仅在第一次调用Instance()方法时初始化或创建Singleton实例。对于很多应用程序,这种方法效果很好。但对于多线程应用程序,这种方法证明具有潜在危险的副作用。如果两个线程同时进入控制块,则可能会创建该成员变量的两个实例。要解决这一问题,您可能想只将重要部分放在控制块周围以确保线程安全。如果您这样做,则将对实例方法的所有调用进行序列化处理,并且可能会对性能产生不利影响(取决于应用程序)。正是由于这个原因,创建了此模式的另一个版本,它使用某种称为双重检验机制的功能。下一个代码示例显示使用Java语法的双重检验锁定。

  使用Java语法的双重检验锁定Singleton代码

 
//C++ port to Java
class Singleton
{
public staticSingletonInstance() {
if (_instance == null) {
synchronized (Class.forName("Singleton")) {
if (_instance == null) {
_instance = new Singleton();
}
}
}
return _instance;
}
protected Singleton() {}
private staticSingleton_instance = null;
}

  在使用Java语法的双重检验锁定Singleton代码示例中,我们直接将C++代码移植到Java代码,以便利用Java关键部分块(已同步)。主要差别是不再有单独的声明和实现部分,没有指针数据类型,并且采用了新的双重检验机制。双重检验发生在第一个IF块上。如果成员变量为空,则执行进入关键部分块,该块再次双重检验该成员变量。仅在通过此最终测试后,才会实例化该成员变量。一般来说,两个线程无法使用这种方法创建两个类实例。另外,因为在第一次检查时没有出现线程阻塞,所以对此方法的大多数调用不会由于必须进入锁定而导致性能下降。目前,在实现Singleton模式时,很多Java应用程序中都广泛使用这种方法。

  这种方法很巧妙,但也有瑕疵。某些优化编译器可以将惰性初始化代码优化掉或对其重新进行排序,并且会重新产生线程安全问题。
 
  另一种试图解决此问题的方法可能是,在成员变量声明中使用volatile关键字。这应该告诉编译器不要对代码重新排序,并且放弃优化。目前,这是唯一建议的JVM内存模型,并且不会立即解决该问题。

  实现Singleton的最好方法是什么?最终(而不是碰巧),Microsoft .NET框架解决了所有这些问题,从而更易于实现Singleton,却不会产生我们目前讨论的不利副作用。.NET框架以及C#语言允许我们在必要时通过替换语言关键字,将上述的Java语法移植到C#语法。因此,Singleton代码变为以下内容:

  以C#编码的双重检验锁定

 
// Port to C#
class Singleton
{
public staticSingletonInstance() {
if (_instance == null) {
lock (typeof(Singleton)) {
if (_instance == null) {
_instance = new Singleton();
}
}
}
return _instance;
}
protected Singleton() {}
private static volatileSingleton_instance = null;
}

  此处,我们替换了锁定关键字来执行关键部分块,使用typeof操作并添加volatile关键字,以确保没有对代码进行优化程序重新排序。虽然此代码或多或少是GoFSingleton模式的直接移植,但它可达到我们的目的,并且我们可获得所需的行为。此代码还说明了将C++移植到Java和将Java移植到C#代码的一些相似之处和主要差别。但是,正如任何代码移植一样,通常目标语言或平台的一些优点可能在移植过程中失去。需要做的就是对代码重构,以便利用新目标语言或平台的功能。

  在前面的每个代码示例中,Singleton的原始实现随时间的推移而发生变化,以解决在每个新模式实现中发现的问题。一些问题(例如,线程安全)要求对大多数实现进行更改,以满足在目前应用程序中日益增长的需要并解决演变发展问题。.NET在应用程序开发中提供了一个演变步骤。可以在“框架”级别解决前面示例中出现的很多亟待解决的问题,而不是在实现级别解决。虽然上一个示例显示了一个使用.NET框架和C#的有效Singleton类,但只需更好地利用.NET框架本身就可以大大简化此代码。以下示例使用.NET,它是一个松散地基于原始GoF模式的最小限度的Singleton类,并且仍然可获得类似的行为。

  .NETSingleton示例

 
//.NET Singleton
sealed class Singleton
{
private Singleton() {}
public static readonlySingletonInstance = new Singleton();
}

  此版本已大大简化并且更加直观。它仍然是Singleton吗?让我们看一下更改了哪些内容,然后再做决定。我们修改了要密封的类本身(该类密封后是不可继承的),删除了惰性初始化代码,删除了Instance()方法,并且对_instance变量做了大量的修改。对_instance变量所做的更改包括修改对公共方法的访问级别,将变量标记为只读,以及在声明时初始化该变量。此处,我们可以直接定义所需的行为,而不关心实现的潜在有害的副作用。那么,使用惰性初始化有什么优点以及使用多个线程有什么危险呢?在.NET框架中内置了所有正确的行为。让我们先看第一种情况:惰性初始化。

  最初使用惰性初始化的主要原因是要获取仅在第一次调用Instance()方法中创建实例的行为,还因为C++规范中具有某种开放性,并不定义静态变量的确切初始化顺序。要在C++中获得所需的Singleton行为,必须采用涉及使用惰性初始化的运算方法。我们真正关心的是在第一次(在该情况下)调用实例属性中创建该实例,还是在此调用之前创建该实例的,并且类中的静态变量是否有已定义的初始化顺序。对于.NET框架,这就是我们获取的行为。在JIT过程中,当(且仅当)任何方法使用静态属性时,“框架”将初始化此静态属性。如果没有使用该属性,则不会创建实例。更准确地说,在JIT过程中发生的事情就是,在任何调用方使用该类的任何静态成员时构造和加载该类。在这种情况下,结果是相同的。

  那么,线程安全初始化呢?“框架”也解决了这一问题。“框架”内部保证静态类型初始化的线程安全。换句话说,在上面的示例中,只创建一个Singleton类实例。还要注意,用于保存类实例的属性字段称为实例。此选项更好地说明了,在本文中的讨论过程中,此值是类的实例。在“框架”本身中,虽然使用的属性名称称为值,但有多个类使用此类型的Singleton。概念完全相同。

  对类所做的其他更改意味着禁止划分子类。添加密封类修饰符可确保不会将该类划分为子类。GoFSingleton模式详细介绍了试图对Singleton划分子类所产生的问题,该划分通常并不是小事。在大多数情况下,可以很容易地开发没有父类的Singleton,并且添加划分子类功能会增加通常根本不需要的新的复杂性级别。随着复杂性的提高,测试、培训和文档编制等所需的时间也会增加。通常,除非绝对必要,否则您不希望提高任何代码的复杂性。

  让我们看一下如何使用Singleton。使用我们最初的计数器的有关动机的概念,我们可以创建一个简单的Singleton计数器类并说明我们将如何使用它。图3显示了UML类说明将包含什么内容。

 

  相应的类实现代码以及示例客户端使用如下所示。

  示例Singleton使用

 
sealed class SingletonCounter {
public static readonly SingletonCounter Instance =
new SingletonCounter();
private long Count = 0;
private SingletonCounter() {}
public long NextValue() {
return ++Count;
}
}

class SingletonClient {
[STAThread]
static void Main() {
for (int i=0; i<20; i++) {
Console.WriteLine("NextSingletonvalue: {0}",
SingletonCounter.Instance.NextValue());
}
}
}

  此处,我们还创建了一个Singleton类来维护具有long类型的增量计数。客户端是一个简单的控制台应用程序,它显示计数器类的20个值。虽然此示例极其简单,但它却说明了如何使用.NET来实现Singleton,然后将其用在应用程序中。

  小结

  Singleton设计模式是一个非常有用的机制,可用于在面向对象的应用程序中提供单个对象访问点。无论使用的是什么实现,该模式提供一个大家所熟知的概念,以便其在设计和开发小组之间方便地进行共享。但是,正如我们所发现的一样,注意到这些实现有多大差异及其潜在的副作用也是非常重要的。.NET框架为模式实现者在设计所需的功能类型方面提供了很大的帮助,实现者无需处理本文中所讨论的很多副作用。在正确实现后,可以证实模式的最初目的的有效性。

  设计模式是非常有用的软件设计概念,可使小组将重点放在提供最佳类型的应用程序上,而不考虑它们是什么应用程序。关键在于正确而有效地使用设计模式,目前有很多关于将设计模式用于Microsoft .NET方面的MSDN系列文档,其中介绍了如何正确而有效地使用设计模式。
posted on 2005-04-20 21:24  毛小华  阅读(477)  评论(0编辑  收藏  举报