LinkedList源码及解析
package java.util; import java.util.function.Consumer; /** * LinkedList基于链表实现 * 实现了List、Deque、Cloneable、Serializable接口 */ public class LinkedList<E> extends AbstractSequentialList<E> implements List<E>, Deque<E>, Cloneable, java.io.Serializable { transient int size = 0;//list默认的长度 transient Node<E> first;//list第一个节点 transient Node<E> last;//list最后一个节点 public LinkedList() { } public LinkedList(Collection<? extends E> c) { this(); addAll(c); } //在链表的开始连接一个节点 private void linkFirst(E e) { final Node<E> f = first; final Node<E> newNode = new Node<>(null, e, f); first = newNode; if (f == null) last = newNode; else f.prev = newNode; size++; modCount++;//修改次数,用于快速失败机制 } //在链表结尾连接一个节点 void linkLast(E e) { final Node<E> l = last; final Node<E> newNode = new Node<>(l, e, null); last = newNode; if (l == null) first = newNode; else l.next = newNode; size++; modCount++; } //在succ节点之前连接一个节点 void linkBefore(E e, Node<E> succ) { // assert succ != null; 断言 final Node<E> pred = succ.prev; final Node<E> newNode = new Node<>(pred, e, succ); succ.prev = newNode; if (pred == null) first = newNode; else pred.next = newNode; size++; modCount++; } //截取f.next节点到尾节点 //不过这个地方会断言f肯定是头节点,所以此方法是取消连接第一个节点,也即删除第一个节点 private E unlinkFirst(Node<E> f) { // assert f == first && f != null; final E element = f.item; final Node<E> next = f.next; f.item = null; f.next = null; // help GC first = next; if (next == null) last = null; else next.prev = null; size--; modCount++; return element; } //取消连接最后一个节点(因为断言) private E unlinkLast(Node<E> l) { // assert l == last && l != null; final E element = l.item; final Node<E> prev = l.prev; l.item = null; l.prev = null; // help GC last = prev; if (prev == null) first = null; else prev.next = null; size--; modCount++; return element; } //删除一个非空节点x E unlink(Node<E> x) { // assert x != null; final E element = x.item; final Node<E> next = x.next; final Node<E> prev = x.prev; if (prev == null) { first = next; } else { prev.next = next; x.prev = null; } if (next == null) { last = prev; } else { next.prev = prev; x.next = null; } x.item = null; size--; modCount++; return element; } //得到第一个节点,如果第一个节点为null,会抛出NoSuchElementException public E getFirst() { final Node<E> f = first; if (f == null) throw new NoSuchElementException(); return f.item; } //得到最后一个节点,如果最后一个节点为null,会抛出NoSuchElementException public E getLast() { final Node<E> l = last; if (l == null) throw new NoSuchElementException(); return l.item; } //得到第一个节点,如果第一个节点为null,会抛出NoSuchElementException //与getFirst不同的是该方法会删除第一个节点 public E removeFirst() { final Node<E> f = first; if (f == null) throw new NoSuchElementException(); return unlinkFirst(f); } //得到最后一个节点,如果最后一个节点为null,会抛出NoSuchElementException //与getLast不同的是该方法会删除最后一个节点 public E removeLast() { final Node<E> l = last; if (l == null) throw new NoSuchElementException(); return unlinkLast(l); } //向链表头节点连接一个新节点(由元素e决定) public void addFirst(E e) { linkFirst(e); } //向链表尾节点连接一个新节点(由元素e决定) public void addLast(E e) { linkLast(e); } //判断链表是否包含某一个元素o,会迭代所有元素 public boolean contains(Object o) { return indexOf(o) != -1; } //得到链表长度,也即链表中元素的个数 public int size() { return size; } //向链表中新增一个元素e,默认新增位置为尾端 public boolean add(E e) { linkLast(e); return true; } //通过迭代的方式去删除某一个元素,如果这个元素有重复,则只删除第一个元素(从头节点开始) public boolean remove(Object o) { if (o == null) { for (Node<E> x = first; x != null; x = x.next) { if (x.item == null) { unlink(x); return true; } } } else { for (Node<E> x = first; x != null; x = x.next) { if (o.equals(x.item)) { unlink(x); return true; } } } return false; } //批量增加元素,默认增加到队尾 public boolean addAll(Collection<? extends E> c) { return addAll(size, c); } //批量增加元素,增加到index位置之后,可能会抛出IndexOutOfBoundsException异常 public boolean addAll(int index, Collection<? extends E> c) { checkPositionIndex(index); Object[] a = c.toArray(); int numNew = a.length; if (numNew == 0)//c中若没有元素的话,则会返回false return false; Node<E> pred, succ;//插入后c的首节点的前驱节点与尾节点的后驱节点 if (index == size) { succ = null; pred = last; } else { succ = node(index); pred = succ.prev; } for (Object o : a) { @SuppressWarnings("unchecked") E e = (E) o; Node<E> newNode = new Node<>(pred, e, null); if (pred == null) first = newNode; else pred.next = newNode; pred = newNode; } if (succ == null) { last = pred; } else { pred.next = succ; succ.prev = pred; } size += numNew; modCount++; return true; } //清除所有元素 public void clear() { for (Node<E> x = first; x != null; ) { Node<E> next = x.next; x.item = null; x.next = null; x.prev = null; x = next; } first = last = null; size = 0; modCount++; } //通过位置索引的到元素,头节点index=0 public E get(int index) { checkElementIndex(index); return node(index).item; } //在指定位置插入节点,会覆盖原位置的元素 public E set(int index, E element) { checkElementIndex(index); Node<E> x = node(index); E oldVal = x.item; x.item = element; return oldVal; } //在指定位置插入节点,不会会覆盖原位置的元素 public void add(int index, E element) { checkPositionIndex(index); if (index == size) linkLast(element); else linkBefore(element, node(index)); } //清除位置index的元素 public E remove(int index) { checkElementIndex(index); return unlink(node(index)); } //判断index是不是一个已存在元素的位置 private boolean isElementIndex(int index) { return index >= 0 && index < size; } //判断index是不是迭代器或添加操作的有效位置的索引。 private boolean isPositionIndex(int index) { return index >= 0 && index <= size; } private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+size; } private void checkElementIndex(int index) { if (!isElementIndex(index)) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private void checkPositionIndex(int index) { if (!isPositionIndex(index)) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } //根据index返回节点,此处index断言isElementIndex Node<E> node(int index) { // assert isElementIndex(index); if (index < (size >> 1)) {//并不是从头开始迭代到尾,而是根据判断止迭代一半 Node<E> x = first; for (int i = 0; i < index; i++) x = x.next; return x; } else { Node<E> x = last; for (int i = size - 1; i > index; i--) x = x.prev; return x; } } //搜索操作 //返回o在链表中的位置,如果有多个,只返回第一个,从头节点开始 public int indexOf(Object o) { int index = 0; if (o == null) { for (Node<E> x = first; x != null; x = x.next) { if (x.item == null) return index; index++; } } else { for (Node<E> x = first; x != null; x = x.next) { if (o.equals(x.item)) return index; index++; } } return -1; } //返回o在链表中的位置,如果有多个,只返回第一个,从尾节点开始 public int lastIndexOf(Object o) { int index = size; if (o == null) { for (Node<E> x = last; x != null; x = x.prev) { index--; if (x.item == null) return index; } } else { for (Node<E> x = last; x != null; x = x.prev) { index--; if (o.equals(x.item)) return index; } } return -1; } // 队列操作 //查看队列的第一个元素,但不移除这个元素,并且不会抛出异常 public E peek() { final Node<E> f = first; return (f == null) ? null : f.item; } //得到第一个元素,如果为null,抛出NoSuchElementException异常 public E element() { return getFirst(); } //查看队列的第一个元素,会移除这个元素,不会抛出异常 public E poll() { final Node<E> f = first; return (f == null) ? null : unlinkFirst(f); } //查看队列的第一个元素,会移除这个元素,会抛出NoSuchElementException异常 public E remove() { return removeFirst(); } //向队列中插入一个元素,默认尾部 public boolean offer(E e) { return add(e); } //双端队列操作 //向队列头部中插入一个元素 public boolean offerFirst(E e) { addFirst(e); return true; } //向队列中插入一个元素,默认尾部,与offer(E e)一致 public boolean offerLast(E e) { addLast(e); return true; } //从头部查看一个元素,不删除,且不抛出异常 public E peekFirst() { final Node<E> f = first; return (f == null) ? null : f.item; } //从尾部查看一个元素,不删除,且不抛出异常 public E peekLast() { final Node<E> l = last; return (l == null) ? null : l.item; } //从头部查看一个元素,并删除,不抛出异常 public E pollFirst() { final Node<E> f = first; return (f == null) ? null : unlinkFirst(f); } //从尾部查看一个元素,并删除,不抛出异常 public E pollLast() { final Node<E> l = last; return (l == null) ? null : unlinkLast(l); } //栈操作 //压栈 public void push(E e) { addFirst(e); } //出栈,若没有元素会抛出异常 public E pop() { return removeFirst(); } //删除第一个出现的元素o public boolean removeFirstOccurrence(Object o) { return remove(o); } //删除最后一个出现的元素o public boolean removeLastOccurrence(Object o) { if (o == null) {//很聪明的从后往前遍历 for (Node<E> x = last; x != null; x = x.prev) { if (x.item == null) { unlink(x); return true; } } } else { for (Node<E> x = last; x != null; x = x.prev) { if (o.equals(x.item)) { unlink(x); return true; } } } return false; } //迭代器 //双端链表迭代器 public ListIterator<E> listIterator(int index) { checkPositionIndex(index); return new ListItr(index); } private class ListItr implements ListIterator<E> { private Node<E> lastReturned; private Node<E> next; private int nextIndex; private int expectedModCount = modCount; ListItr(int index) { // assert isPositionIndex(index); next = (index == size) ? null : node(index); nextIndex = index; } public boolean hasNext() { return nextIndex < size; } public E next() { checkForComodification(); if (!hasNext()) throw new NoSuchElementException(); lastReturned = next; next = next.next; nextIndex++; return lastReturned.item; } public boolean hasPrevious() { return nextIndex > 0; } public E previous() { checkForComodification(); if (!hasPrevious()) throw new NoSuchElementException(); lastReturned = next = (next == null) ? last : next.prev; nextIndex--; return lastReturned.item; } public int nextIndex() { return nextIndex; } public int previousIndex() { return nextIndex - 1; } //删除的是上一个元素 public void remove() { checkForComodification(); if (lastReturned == null) throw new IllegalStateException(); Node<E> lastNext = lastReturned.next; unlink(lastReturned); if (next == lastReturned) next = lastNext; else nextIndex--; lastReturned = null; expectedModCount++; } //设置上一个元素的值为e,会覆盖 public void set(E e) { if (lastReturned == null) throw new IllegalStateException(); checkForComodification(); lastReturned.item = e; } //上一个元素后插入一个的值为e的元素,不会覆盖 public void add(E e) { checkForComodification(); lastReturned = null; if (next == null) linkLast(e); else linkBefore(e, next); nextIndex++; expectedModCount++; } //foreach 迭代剩余的元素,并使用Consumer影响 public void forEachRemaining(Consumer<? super E> action) { Objects.requireNonNull(action); while (modCount == expectedModCount && nextIndex < size) { action.accept(next.item); lastReturned = next; next = next.next; nextIndex++; } checkForComodification();//审查快速失败 } final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } } //链表中的实体类--节点 private static class Node<E> { E item;//元素 Node<E> next;//前驱 Node<E> prev;//后驱 Node(Node<E> prev, E element, Node<E> next) { this.item = element; this.next = next; this.prev = prev; } } //单向的迭代器,只需往后不许往前 public Iterator<E> descendingIterator() { return new DescendingIterator(); } //单向迭代器 private class DescendingIterator implements Iterator<E> { private final ListItr itr = new ListItr(size()); public boolean hasNext() { return itr.hasPrevious(); } public E next() { return itr.previous(); } public void remove() { itr.remove(); } } @SuppressWarnings("unchecked") private LinkedList<E> superClone() { try { return (LinkedList<E>) super.clone(); } catch (CloneNotSupportedException e) { throw new InternalError(e); } } //浅复制链表 public Object clone() { LinkedList<E> clone = superClone(); // Put clone into "virgin" state clone.first = clone.last = null; clone.size = 0; clone.modCount = 0; // Initialize clone with our elements for (Node<E> x = first; x != null; x = x.next) clone.add(x.item); return clone; } //toArray返回一个Object[] public Object[] toArray() { Object[] result = new Object[size]; int i = 0; for (Node<E> x = first; x != null; x = x.next) result[i++] = x.item; return result; } //toArray返回特定类型的数据 @SuppressWarnings("unchecked") public <T> T[] toArray(T[] a) { if (a.length < size) a = (T[])java.lang.reflect.Array.newInstance( a.getClass().getComponentType(), size); int i = 0; Object[] result = a;//此处用引用逻辑实现赋值的,可以避免强制转换,只能说太6了 for (Node<E> x = first; x != null; x = x.next) result[i++] = x.item; if (a.length > size) a[size] = null; return a; } private static final long serialVersionUID = 876323262645176354L; //往一个流中写当前对象 private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { // Write out any hidden serialization magic s.defaultWriteObject(); // Write out size s.writeInt(size); // Write out all elements in the proper order. for (Node<E> x = first; x != null; x = x.next) s.writeObject(x.item); } //往一个流中读当前对象 @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { // Read in any hidden serialization magic s.defaultReadObject(); // Read in size int size = s.readInt(); // Read in all elements in the proper order. for (int i = 0; i < size; i++) linkLast((E)s.readObject()); } //可分裂的迭代器,用于并行计算 @Override public Spliterator<E> spliterator() { return new LLSpliterator<E>(this, -1, 0); } /** A customized variant of Spliterators.IteratorSpliterator */ static final class LLSpliterator<E> implements Spliterator<E> { static final int BATCH_UNIT = 1 << 10; // batch array size increment 1024 static final int MAX_BATCH = 1 << 25; // max batch array size; 33554432 final LinkedList<E> list; // null OK unless traversed Node<E> current; // 当前节点 默认为null int est; // size的估计值,默认为-1 int expectedModCount; // 预期的修改数量,用于快速失败 int batch; // batch size for splits LLSpliterator(LinkedList<E> list, int est, int expectedModCount) { this.list = list; this.est = est; this.expectedModCount = expectedModCount; } final int getEst() { int s; // force initialization final LinkedList<E> lst; if ((s = est) < 0) { if ((lst = list) == null) s = est = 0; else { expectedModCount = lst.modCount; current = lst.first; s = est = lst.size; } } return s; } //得到size估计值 public long estimateSize() { return (long) getEst(); } //这就是为Spliterator专门设计的方法,区分与普通的Iterator,该方法会把当前元素划分一部分出去创建一个新的Spliterator作为返回, //两个Spliterator变会并行执行,如果元素个数小到无法划分则返回null public Spliterator<E> trySplit() { Node<E> p; int s = getEst(); if (s > 1 && (p = current) != null) { int n = batch + BATCH_UNIT; if (n > s) n = s; if (n > MAX_BATCH) n = MAX_BATCH; Object[] a = new Object[n]; int j = 0; do { a[j++] = p.item; } while ((p = p.next) != null && j < n); current = p; batch = j; est = s - j; return Spliterators.spliterator(a, 0, j, Spliterator.ORDERED); } return null; } public void forEachRemaining(Consumer<? super E> action) { Node<E> p; int n; if (action == null) throw new NullPointerException(); if ((n = getEst()) > 0 && (p = current) != null) { current = null; est = 0; do { E e = p.item; p = p.next; action.accept(e); } while (p != null && --n > 0); } if (list.modCount != expectedModCount) throw new ConcurrentModificationException(); } //tryAdvance就是顺序处理每个元素,类似Iterator,如果还有元素要处理,则返回true,否则返回false public boolean tryAdvance(Consumer<? super E> action) { Node<E> p; if (action == null) throw new NullPointerException(); if (getEst() > 0 && (p = current) != null) { --est; E e = p.item; current = p.next; action.accept(e); if (list.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } return false; } //其实就是表示该Spliterator有哪些特性,用于可以更好控制和优化Spliterator的使用 public int characteristics() { return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; } } }