Flume 之 安装|简单使用|问题汇总

一、安装

进入目录
cd conf/
cp flume-env.sh.template flume-env.sh
vi flume-env.sh
添加 >>> JAVA_HOME=/opt/bigdata/java/jdk180
然后配置环境变量
vi /etc/profile
#flume
export FLUME_HOME=/opt/bigdata/flume160
export PATH=$PATH:$FLUME_HOME/bin
source /etc/profile
验证flume安装成功:
[root@vbserver ~]# flume-ng version
Flume 1.6.0-cdh5.14.2
Source code repository: https://git-wip-us.apache.org/repos/asf/flume.git
Revision: 50436774fa1c7eaf0bd9c89ac6ee845695fbb687
Compiled by jenkins on Tue Mar 27 13:55:10 PDT 2018
From source with checksum 30217fe2b34097676ff5eabb51f4a11d

二、配置参数

见:https://www.cnblogs.com/yin-fei/p/10778719.html

官方:http://flume.apache.org/releases/content/1.9.0/FlumeUserGuide.html#flume-sources

三、简单使用

1.单个文件到HDFS

写一个flume.properties,建立/root/flume/data && /root/flume/checkpoint

vi flume.properties

a1.channels = c1
a1.sources = r1
a1.sinks = k1

a1.sources.r1.type = exec
a1.sources.r1.channels = c1
a1.sources.r1.command = tail -F /root/abc.log

a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /root/flume/checkpoint  # 需要已经存在
a1.channels.c1.dataDir = /root/flume/data  # 需要已经存在

a1.sinks.k1.type = hdfs
a1.sinks.k1.channel = c1
a1.sinks.k1.hdfs.path = hdfs://192.168.56.111:9000/flume/events

2.执行命令

flume-ng agent --name a1 -f /root/flumetest/flume.properties

3.结果

2.实验1:用spooldir监听目录并输出多个文件

发现结果有10份,十行十events一个文件

如何指定目录中特定格式的文件?  a1.sources.r1.includePattern= users_[0-9]{4}.csv 

a1.channels = c1
a1.sources = r1
a1.sinks = k1

a1.sources.r1.type = spooldir
a1.sources.r1.channels = c1
a1.sources.r1.spoolDir = /root/flumeData

a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /root/flume/checkpoint
a1.channels.c1.dataDirs = /root/flume/data

a1.sinks.k1.type = hdfs
a1.sinks.k1.channel = c1
a1.sinks.k1.hdfs.path = hdfs://192.168.56.111:9000/flume/logs1
a1.sinks.k1.hdfs.fileType=DataStream

结果

如果发现卡住,原因:

mv abc.log.COMPLETED abc.log

3.实验2:用spooldir监听目录并输出1个文件

rollcount=1000 => 1000条以下都是1个文件

a1.channels = c1
a1.sources = r1
a1.sinks = k1


a1.sources.r1.type = spooldir
a1.sources.r1.channels = c1
a1.sources.r1.spoolDir = /root/flumeData


a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /root/flume/checkpoint
a1.channels.c1.dataDirs = /root/flume/data


a1.sinks.k1.type = hdfs
a1.sinks.k1.channel = c1
a1.sinks.k1.hdfs.path = hdfs://192.168.56.111:9000/flume/logs3
a1.sinks.k1.hdfs.fileType=DataStream
a1.sinks.k1.hdfs.rollCount = 10000

结果

4.实验3:验证spooldir监听目录的作用:新增新log

hdfs dfs -cat /flume/logs3/*

查看hdfs结果:abc.log中所有文件(从test1-test99)
查看监听目录:abc标记为completed

[root@vbserver flumeData]# ls
abc.log.COMPLETED 

新建log:cde.log(写有c1-c4)

[root@vbserver flumeData]# ls
abc.log.COMPLETED cde.log

再次执行命令:

flume-ng agent --name a1 -f /root/flumetest/flume.properties

查看hdfs结果:
(test1-test99 c1-c4)

5.改进:上传HDFS合成一个文件

a1.channels = c1
a1.sources = r1
a1.sinks = k1

a1.sources.r1.type = spooldir
a1.sources.r1.channels = c1
a1.sources.r1.spoolDir = /root/flumeData
a1.sources.r1.batchSize = 10000

a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /root/flume/checkpoint
a1.channels.c1.dataDirs = /root/flume/data

a1.sinks.k1.type = hdfs
a1.sinks.k1.channel = c1
a1.sinks.k1.hdfs.path = hdfs://192.168.56.111:9000/flume/logs4
a1.sinks.k1.hdfs.fileType=DataStream
a1.sinks.k1.hdfs.rollCount = 0                #设置文件的生成和events数无关
a1.sinks.k1.hdfs.rollSize = 10485760          #1024 * 10 * 1024 = 10G
a1.sinks.k1.hdfs.rollInterval = 60            #每60秒生成一个文件
a1.sinks.k1.hdfs.useLocalTimeStamp = true     #使用本地时间戳,如:用来命名文件

5.输出到Kafka,每一行是一个小消息!

a1.channels = c1
a1.sources = r1
a1.sinks = k1

a1.sources.r1.type = spooldir
a1.sources.r1.channels = c1
a1.sources.r1.spoolDir = /root/flumeData
a1.sources.r1.batchSize = 10000

a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /root/flume/checkpoint
a1.channels.c1.dataDirs = /root/flume/data

a1.sinks.k1.channel  =  c1
a1.sinks.k1.type  =  org.apache.flume.sink.kafka.KafkaSink 
a1.sinks.k1.kafka.topic  =  mytopic # 可以原来没这个topic,能自动生成
a1.sinks.k1.kafka.bootstrap.servers  = 192.168.56.111:9092 
a1.sinks.k1.kafka.flumeBatchSize  =  100 
a1.sinks.k1.kafka.producer.acks  =  1

启动kafka后,实时验证:

kafka-console-consumer.sh --bootstrap-server 192.168.56.111:9092 --topic mytopic // 实时消费

执行命令:

flume-ng agent --name a1 -f /root/flumetest/flume.properties

结果:

6.使用拦截器给csv去头

a1.channels = c1
a1.sources = r1
a1.sinks = k1

a1.sources.r1.type = spooldir
a1.sources.r1.channels = c1
a1.sources.r1.spoolDir = /root/flumeData
a1.sources.r1.batchSize = 10000

a1.sources.r1.interceptors=i1
a1.sources.r1.interceptors.i1.type=regex_filter
a1.sources.r1.interceptors.i1.regex = user_id.*   # 第一行是user_id开头
a1.sources.r1.interceptors.i1.excludeEvents=true  # exclude 匹配上的
a1.channels.c1.type = file a1.channels.c1.checkpointDir = /root/flume/checkpoint a1.channels.c1.dataDirs = /root/flume/data a1.sinks.k1.channel = c1 a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink a1.sinks.k1.kafka.topic = users # users.csv => users这个topic a1.sinks.k1.kafka.bootstrap.servers = 192.168.56.111:9092 a1.sinks.k1.kafka.flumeBatchSize = 100 a1.sinks.k1.kafka.producer.acks = 1

比对传输前后的条数:

[root@vbserver flumeData]# wc -l users.csv
38210 users.csv

开启kafka实时消费:

kafka-console-consumer.sh --bootstrap-server 192.168.56.111:9092 --topic users // 实时消费

执行命令:

flume-ng agent --name a1 -f /root/flumetest/flume.properties

结果:

Processed a total of 38209 messages  # csv去头成功!

四、问题汇总

1.GC OOM

Flume安装目录下bin
vi flume-ng
解决方法: 改大  JAVA_OPTS="-Xms100m -Xmx2000m -Dcom.sun.management.jmxremote" 

2.传入KFK后消息行数翻倍

原因:单行超过最大length会截断,另起下一行 => 所以kfk的消息数会变大!

 解决方法: a1.sources.r1.deserializer.maxLineLength=1200000 

3.Topic xxx does not exist on ZK path xxxx

kfk的topic删除后 => kfk 和zk关于该topic的信息都灭

但是flume没有关,发现没有传输成功,便又开始传输 => 所以查看kfk的topic时会出现报错

解决方法:先停flume,再delete kfk的topic

4.上游下游都卡住没动

检查一下spoolDir目录下是否所有文件都COMPLETED

 

posted @ 2020-12-10 15:52  PEAR2020  阅读(317)  评论(0编辑  收藏  举报