Spark ML 之 ALS内存溢出的解决办法
原帖:https://blog.csdn.net/Damonhaus/article/details/76572971
问题:协同过滤 ALS算法。在测试过程中遇到了内存溢出的错误
解决办法1:降低迭代次数,20次 -> 10次
val model = new ALS().setRank(10).setIterations(20).setLambda(0.01).setImplicitPrefs(false) .run(alldata)
以上改成 .setIterations(10)
解决办法2:checkpoint机制
/** * 删除checkpoint留下的过程数据 */ val path = new Path(HDFSConnection.paramMap("hadoop_url")+"/checkpoint"); //声明要操作(删除)的hdfs 文件路径 val hadoopConf = spark.sparkContext.hadoopConfiguration val hdfs = org.apache.hadoop.fs.FileSystem.get(new URI(HDFSConnection.paramMap("hadoop_url")+"/checkpoint"),hadoopConf) if(hdfs.exists(path)) { //需要递归删除设置true,不需要则设置false hdfs.delete(path, true) //这里因为是过程数据,可以递归删除 } /** * 设置 CheckpointDir */ spark.sparkContext.setCheckpointDir(HDFSConnection.paramMap("hadoop_url")+"/checkpoint")
/** * Set period (in iterations) between checkpoints (default = 10). Checkpointing helps with * recovery (when nodes fail) and StackOverflow exceptions caused by long lineage. It also helps * with eliminating temporary shuffle files on disk, which can be important when there are many * ALS iterations. If the checkpoint directory is not set in [[org.apache.spark.SparkContext]], * this setting is ignored. */ val model = new ALS().setCheckpointInterval(2).setRank(10).setIterations(20).setLambda(0.01).setImplicitPrefs(false) .run(alldata)