scala之 spark连接SQL和HIVE/IDEA操作HDFS
一、连接SQL
方法一、
package com.njbdqn.linkSql import java.util.Properties import org.apache.spark.sql.SparkSession import org.apache.spark.sql._ object LinkSql { def main(args: Array[String]): Unit = { val spark = SparkSession.builder().appName("apptest").master("local[2]").getOrCreate() // 1.properties val prop = new Properties() prop.setProperty("driver","com.mysql.jdbc.Driver") prop.setProperty("user","root") prop.setProperty("password","root") // 2.jdbcDF show val jdbcDF = spark.read.jdbc("jdbc:mysql://192.168.56.111:3306/test","studentInfo",prop) jdbcDF.show(false) // 3.添加一行 import spark.implicits._ val df = spark.createDataFrame(spark.sparkContext.parallelize(Seq((90, "抖抖抖", "男", 23, "sdf", "sdfg@dfg"),(8, "抖33", "男", 23, "s444f", "sdfg@dfg")))) .toDF("sid","sname","sgender","sage","saddress","semail") // df.show(false) df.write.mode("append").jdbc("jdbc:mysql://192.168.56.111:3306/test","studentInfo",prop) } }
方法二、
package com.njbdqn import org.apache.spark.sql.{DataFrame, SparkSession} object KMeansTest { def readMySQL(spark:SparkSession):DataFrame ={ val map:Map[String,String]=Map[String,String]( elems="url"->"jdbc:mysql://192.168.56.111:3306/myshops", "driver" -> "com.mysql.jdbc.Driver", "user" ->"root", "password"->"root", "dbtable"->"customs" ) spark.read.format("jdbc").options(map).load() } def main(args: Array[String]): Unit = { val spark=SparkSession.builder().appName("db").master("local[*]").getOrCreate() readMySQL(spark).select("cust_id","company","province_id","city_id","district_id","membership_level","create_at","last_login_time","idno","biz_point","sex","marital_status","education_id","login_count","vocation","post") .show(20) spark.stop() } }
方法三、读取Resource上写的.properties配置:
https://www.cnblogs.com/sabertobih/p/13874061.html
二、连接HIVE
(一)8 9月写的,没有理解,写的不好
1.添加resources
2.代码
package com.njbdqn.linkSql import org.apache.spark.sql.SparkSession object LinkHive { def main(args: Array[String]): Unit = { val spark = SparkSession.builder().appName("apptest").master("local[2]") .enableHiveSupport() .getOrCreate() spark // .sql("show databases") .sql("select * from storetest.testhive") .show(false) } }
注意!如果XML配置中配置的是集群, val df = spark.read.format("csv").load("file:///D:/idea/ideaProjects/spark_projects/myspark8/src/main/scala/com/njbdqn/DSDF/orders.csv") 就失败了,因为
>>> spark可以读取本地数据文件,但是需要在所有的节点都有这个数据文件(亲测,在有三个节点的集群中,只在master中有这个数据文件时执行textFile方法一直报找不到文件,
在另外两个work中复制这个文件之后,就可以读取文件了)
>>> 解决:删除配置(本地)/上传到hdfs(集群)
(二)12月25日写的
pom文件:
<dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-hive_2.11</artifactId> <version>2.3.4</version> </dependency>
代码中增加配置:hive.metastore.uris
开启metastore元数据共享,
修改方案详见:https://www.pianshen.com/article/8993307375/
为什么这样修改?原理见:https://www.cnblogs.com/sabertobih/p/13772933.html
import org.apache.spark.sql.SparkSession object EventTrans { def main(args: Array[String]): Unit = { val spark = SparkSession.builder().master("local[*]") .config("hive.metastore.uris","thrift://192.168.56.115:9083") # 配置metastore server的访问地址,该server必须开启服务 .appName("test") .enableHiveSupport().getOrCreate() spark.sql("select * from dm_events.dm_final limit 3") .show(false) spark.close() } }
1)192.168.56.115 需要开启metastore服务
hive --service metastore
如果不启动服务,在启动Spark thriftServer服务的时候会报如下错误:
org.apache.hadoop.hive.ql.metadata.HiveException: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient
2)192.168.56.115 需要配置直连mysql
验证:
三、操作HDFS 之 删除
val spark = SparkSession.builder().master("local[*]").appName("app").getOrCreate(); /** * 删除checkpoint留下的过程数据 */ val path = new Path(HDFSConnection.paramMap("hadoop_url")+"/checkpoint"); //声明要操作(删除)的hdfs 文件路径 val hadoopConf = spark.sparkContext.hadoopConfiguration val hdfs = org.apache.hadoop.fs.FileSystem.get(new URI(HDFSConnection.paramMap("hadoop_url")+"/checkpoint"),hadoopConf) if(hdfs.exists(path)) { //需要递归删除设置true,不需要则设置false hdfs.delete(path, true) //这里因为是过程数据,可以递归删除 }
出现的问题:
Exception in thread "main" java.lang.IllegalArgumentException: Wrong FS: hdfs://h1:9000/out, expected: file:///
at org.apache.hadoop.fs.FileSystem.checkPath(FileSystem.java:381)
at org.apache.hadoop.fs.RawLocalFileSystem.pathToFile(RawLocalFileSystem.java:55)
at org.apache.hadoop.fs.RawLocalFileSystem.getFileStatus(RawLocalFileSystem.java:393)
at org.apache.hadoop.fs.ChecksumFileSystem.delete(ChecksumFileSystem.java:452)
at mapreduce.WordCountApp.main(WordCountApp.java:36)
解决方法:
val hdfs = org.apache.hadoop.fs.FileSystem.get(new URI(HDFSConnection.paramMap("hadoop_url")+"/checkpoint"),hadoopConf)