[LOJ 6029]「雅礼集训 2017 Day1」市场
[LOJ 6029] 「雅礼集训 2017 Day1」市场
题意
给定一个长度为 \(n\) 的数列(从 \(0\) 开始标号), 要求执行 \(q\) 次操作, 每次操作为如下四种操作之一:
1 l r c
给 \([l,r]\) 区间内的值全部加上 \(c\).2 l r d
给 \([l,r]\) 区间内的值全部除以 \(d\), 向下取整.3 l r
求 \([l,r]\) 区间内的最小值.4 l r
求 \([l,r]\) 区间内的值之和.
\(n,q\le 1\times 10^5, |c|\le1\times 10^4,d\in[2,1\times 10^9]\), 时限 \(2\texttt{s}\).
题解
玄学线段树.
首先看到题目容易想到一个数最多除 $\log $ 次就会变成 \(0/1\). 但是区间加法操作让这个势能分析假掉了. (单点加法是滋磁的)
注意到在除法操作中每除一次就会导致区间内的数的浮动量 (即 \(\max - \min\)) 至少减半. 而加法操作虽然是区间操作, 但是对浮动量造成的变化只有常数个位置(两端). 而相近的一坨数整体除法可以看作是进行了一次区间加法操作.
又因为当 \(x\) 递增的时候 \(\left \lfloor \frac x d \right \rfloor\) 单调不降, 于是只要 \(\left \lfloor \frac \max d \right \rfloor - \max=\left \lfloor \frac \min d \right \rfloor -\min\), 那么整个区间产生的差值都是一样的, 都可以用一次区间加法操作代替. 而一次区间加法是 \(O(\log n)\) 的, 于是总复杂度是 \(O(q\log n\log V)\).
参考代码
#include <bits/stdc++.h>
const int MAXN=1e5+10;
typedef long long intEx;
struct Node{
int l;
int r;
int max;
int min;
int add;
intEx sum;
Node* lch;
Node* rch;
Node(int,int);
void Add(int);
void PushDown();
void Maintain();
void Add(int,int,int);
void Div(int,int,int);
int QueryMin(int,int);
intEx QuerySum(int,int);
};
int n;
int q;
int a[MAXN];
int ReadInt();
inline int FDiv(int,int);
int main(){
n=ReadInt(),q=ReadInt();
for(int i=0;i<n;i++)
a[i]=ReadInt();
Node* N=new Node(0,n-1);
for(int i=0;i<q;i++){
int t=ReadInt(),l=ReadInt(),r=ReadInt();
if(t==1){
int d=ReadInt();
N->Add(l,r,d);
}
else if(t==2){
int d=ReadInt();
N->Div(l,r,d);
}
else if(t==3)
printf("%d\n",N->QueryMin(l,r));
else if(t==4)
printf("%lld\n",N->QuerySum(l,r));
}
return 0;
}
intEx Node::QuerySum(int l,int r){
if(l<=this->l&&this->r<=r)
return this->sum;
else{
this->PushDown();
if(r<=this->lch->r)
return this->lch->QuerySum(l,r);
if(this->rch->l<=l)
return this->rch->QuerySum(l,r);
return this->lch->QuerySum(l,r)+this->rch->QuerySum(l,r);
}
}
int Node::QueryMin(int l,int r){
if(l<=this->l&&this->r<=r)
return this->min;
else{
this->PushDown();
if(r<=this->lch->r)
return this->lch->QueryMin(l,r);
if(this->rch->l<=l)
return this->rch->QueryMin(l,r);
return std::min(this->lch->QueryMin(l,r),this->rch->QueryMin(l,r));
}
}
void Node::Add(int l,int r,int d){
if(l<=this->l&&this->r<=r)
this->Add(d);
else{
this->PushDown();
if(l<=this->lch->r)
this->lch->Add(l,r,d);
if(this->rch->l<=r)
this->rch->Add(l,r,d);
this->Maintain();
}
}
void Node::Div(int l,int r,int d){
if(l<=this->l&&this->r<=r){
if(this->max-FDiv(this->max,d)==this->min-FDiv(this->min,d))
this->Add(FDiv(this->max,d)-this->max);
else{
this->PushDown();
this->lch->Div(l,r,d);
this->rch->Div(l,r,d);
this->Maintain();
}
}
else{
this->PushDown();
if(l<=this->lch->r)
this->lch->Div(l,r,d);
if(this->rch->l<=r)
this->rch->Div(l,r,d);
this->Maintain();
}
}
inline void Node::Add(int d){
this->max+=d;
this->min+=d;
this->add+=d;
this->sum+=1ll*(this->r-this->l+1)*d;
}
inline void Node::Maintain(){
this->sum=this->lch->sum+this->rch->sum;
this->max=std::max(this->lch->max,this->rch->max);
this->min=std::min(this->lch->min,this->rch->min);
}
inline void Node::PushDown(){
if(this->add!=0){
this->lch->Add(this->add);
this->rch->Add(this->add);
this->add=0;
}
}
Node::Node(int l,int r):l(l),r(r),max(a[l]),min(a[r]),add(0),sum(a[l]),lch(NULL),rch(NULL){
if(l!=r){
int mid=(l+r)>>1;
this->lch=new Node(l,mid);
this->rch=new Node(mid+1,r);
this->Maintain();
}
}
inline int ReadInt(){
int x=0,sgn=1;
register char ch=getchar();
while(!isdigit(ch)){
if(ch=='-')
sgn=-sgn;
ch=getchar();
}
while(isdigit(ch)){
x=x*10+ch-'0';
ch=getchar();
}
return x*sgn;
}
inline int FDiv(int x,int d){
if(x>=0)
return x/d;
else
return (x-d+1)/d;
}
本博客已弃用, 新个人主页: https://rvalue.moe, 新博客: https://blog.rvalue.moe