洛谷 P2647 最大收益

题目描述

现在你面前有n个物品,编号分别为1,2,3,……,n。你可以在这当中任意选择任意多个物品。其中第i个物品有两个属性Wi和Ri,当你选择了第i个物品后,你就可以获得Wi的收益;但是,你选择该物品以后选择的所有物品的收益都会减少Ri。现在请你求出,该选择哪些物品,并且该以什么样的顺序选取这些物品,才能使得自己获得的收益最大。

注意,收益的减少是会叠加的。比如,你选择了第i个物品,那么你就会获得了Wi的收益;然后你又选择了第j个物品,你又获得了Wj-Ri收益;之后你又选择了第k个物品,你又获得了Wk-Ri-Rj的收益;那么你获得的收益总和为Wi+(Wj-Ri)+(Wk-Ri-Rj)。

输入输出格式

输入格式:

 

第一行一个正整数n,表示物品的个数。

接下来第2行到第n+1行,每行两个正整数Wi和Ri,含义如题目所述。

 

输出格式:

 

输出仅一行,表示最大的收益。

 

输入输出样例

输入样例#1:
2
5 2
3 5
输出样例#1:
6

说明

20%的数据满足:n<=5,0<=Wi,Ri<=1000。

50%的数据满足:n<=15,0<=Wi,Ri<=1000。

100%的数据满足:n<=3000,0<=Wi,Ri<=200000。

样例解释:我们可以选择1号物品,获得了5点收益;之后我们再选择2号物品,获得3-2=1点收益。最后总的收益值为5+1=6。

 

按照Ri从大到小排序

从前i个物品里选j个 状态转移方程 dp[i][j]=max(dp[i-1][j],dp[i-1][j-1]+w[i]-R[i]*(j-1))

最后在dp[n][i] i∈[1,n]里取最大值即为答案

屠龙宝刀点击就送

#include <algorithm>
#include <cstdio>
#define N 3005
struct node
{
    int w,r;
    bool operator<(node a)const
    {
        return r>a.r;
    }
}pro[N];
int dp[N][N],n,ans;
inline int max(int a,int b) {return a>b?a:b;}
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;++i) scanf("%d%d",&pro[i].w,&pro[i].r);
    std::sort(pro+1,pro+1+n);
    for(int i=1;i<=n;++i)
     for(int j=1;j<=i;++j)
      dp[i][j]=max(dp[i-1][j],dp[i-1][j-1]+pro[i].w-pro[i].r*(j-1));
    for(int i=1;i<=n;++i) ans=max(ans,dp[n][i]);
    printf("%d\n",ans);
    return 0;
}

 

posted @ 2017-09-12 17:40  杀猪状元  阅读(126)  评论(0编辑  收藏  举报