COGS 2057. [ZLXOI2015]殉国
★☆ 输入文件:BlackHawk.in
输出文件:BlackHawk.out
评测插件
时间限制:0.05 s 内存限制:256 MB
【题目描述】
正义的萌军瞄准了位于南极洲的心灵控制器,为此我们打算用空袭摧毁心灵控制器,然而心灵控制器是如此强大,甚至能缓慢控制飞行员。一群勇敢的士(feng)兵(zi)决定投弹后自杀来避免心灵控制。然而自杀非常痛苦,所以萌军指挥官决定到达目的地后让飞机没油而坠落(也避免逃兵)。军官提供两种油:石油和中国输送来的地沟油,刚开始飞机没有油,飞机可以加几桶石油和几桶地沟油(假设石油和地沟油都有无限桶),飞机落地时必须把油耗尽,已知一桶石油和一桶地沟油所能支撑的飞行距离分别为a,b,驾驶员们必须飞往一个目的地,总距离为c.
1.最少,最多需要加几桶油,若只有一种方案,最少和最多的是相同的.
2.总共有多少种不同的加油配方(死法)能到达目的地。
【输入格式】
只有一行,三个正整数a,b,c
【输出格式】
两行,第一行为最少加几次油和最多加几次油,
第二行为加油方法总数。
若不存在任何方法,第一行输出-1 -1
第二行输出0
【样例输入】
样例1: 2 3 10 样例2: 6 8 10
【样例输出】
样例1: 4 5 2 样例2: -1 -1 0
【提示】
样例解释:
样例一:飞机加两次石油,两次地沟油,总次数为4,2*2+3*3=10
飞机加五次石油,不加地沟油,总次数为5,2*5+3*0=10
总共两种
样例二:飞机无法到达目的地
数据范围:
对于10%的数据,a<=103,b<=103,c<=103
对于20%的数据,a<=104,b<=104,c<=106
对于50%的数据,a<=109,b<=109,c<=109
对于100%数据,a<=3⋅1018,b<=3⋅1018,c<=3⋅1018
三个答案分值权重分别为20%,30%,50%
【来源】
这道题卡了很长时间
就是求ax+by=c x+y的最大值与最小值和不同的解的个数
很明显的扩展欧几里得
令gcd(A,B)=D;
Ax+By=C满足有解的必要条件是C mod D = 0
我们先解方程Ax+By=gcd(A,B),得到该方程一组解(p',q’)乘以C/D
即为原方程的一组解(p0,q0)
则任何(p,q)满足
p = p0 +B/D *t
q = q0–A/D *t(其中t为任意整数)都为原方程的解
因为p>=0&&q>=0
所以解不等式求t的范围 (没想到移向卡了4小时。。。)
注意上下取整 数据在long long 范围内 所以需要long double
然后最大值与最小值都在区间开头和结尾取得
方案数等于区间大小 。
因为 p,q满足单调性,但单增单减无法确定
所以最后输出取max与min。
#include <iostream> #include <ctype.h> #include <cstdio> #include <cmath> typedef long long LL; using namespace std; void read(LL &x) { x=0;bool f=0; register char ch=getchar(); for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=1; for(; isdigit(ch);ch=getchar()) x=(x<<3)+(x<<1)+ch-'0'; x=f?(~x)+1:x; } LL exgcd(LL a,LL b,long long &x,long long &y) { if(b==0) { x=1; y=0; return a; } LL an=exgcd(b,a%b,x,y); long long tmp=x; x=y; y=tmp-a/b*y; return an; } void swap(LL &m,LL &n) { LL tmp=n; n=m; m=tmp; } LL max(LL a,LL b) {return a>b?a:b;} LL min(LL a,LL b) {return a>b?b:a;} LL a,b,c,ans,Max,Min; bool linear_equation(LL a,LL b,LL c) { LL x,y; LL gcd=exgcd(a,b,x,y); if(c%gcd) return false; LL x0=c/gcd*x,y0=c/gcd*y; LL l=ceil((long double)-x0/b*gcd),r=floor((long double)y0/a*gcd); ans=r-l+1; Max=x0+b/gcd*r+y0-a/gcd*r; Min=x0+b/gcd*l+y0-a/gcd*l; return true; } int main() { freopen("BlackHawk.in","r",stdin); freopen("BlackHawk.out","w",stdout); read(a);read(b);read(c); if(!(linear_equation(a,b,c))) printf("-1 -1\n0"); else if(ans) cout<<min(Min,Max)<<" "<<max(Min,Max)<<endl<<ans; else printf("-1 -1\n0"); return 0; }
我们都在命运之湖上荡舟划桨,波浪起伏着而我们无法逃脱孤航。但是假使我们迷失了方向,波浪将指引我们穿越另一天的曙光。