spark写数据入kafka示范代码

一.pom文件

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>cn.piesat</groupId>
<artifactId>SparkToKafka</artifactId>
<version>1.0-SNAPSHOT</version>

<name>SparkToKafka</name>
<!-- FIXME change it to the project's website -->
<url>http://www.example.com</url>

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<maven.compiler.source>1.7</maven.compiler.source>
<maven.compiler.target>1.7</maven.compiler.target>
<spark.version>2.1.0</spark.version>
<hadoop.version>2.7.4</hadoop.version>
<kafka.version>1.0.0</kafka.version>
</properties>

<dependencies>
<!--spark框架开始-->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.11</artifactId>
<version>${spark.version}</version>
<exclusions>
<exclusion>
<artifactId>commons-logging</artifactId>
<groupId>commons-logging</groupId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>${hadoop.version}</version>
<exclusions>
<exclusion>
<artifactId>commons-logging</artifactId>
<groupId>commons-logging</groupId>
</exclusion>
<exclusion>
<artifactId>slf4j-log4j12</artifactId>
<groupId>org.slf4j</groupId>
</exclusion>
<exclusion>
<artifactId>log4j</artifactId>
<groupId>log4j</groupId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
<version>2.1.0</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.11</artifactId>
<version>${kafka.version}</version>
<exclusions>
<exclusion>
<artifactId>slf4j-log4j12</artifactId>
<groupId>org.slf4j</groupId>
</exclusion>
<exclusion>
<artifactId>log4j</artifactId>
<groupId>log4j</groupId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase</artifactId>
<version>1.2.6</version>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-client</artifactId>
<version>1.0.2</version>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-server</artifactId>
<version>1.0.2</version>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-common</artifactId>
<version>1.0.2</version>
</dependency>

<!--spark框架结束-->
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.47</version>
</dependency>
<dependency>
<groupId>c3p0</groupId>
<artifactId>c3p0</artifactId>
<version>0.9.1.2</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.44</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.2</version>
<configuration>
<recompileMode>incremental</recompileMode>
</configuration>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>2.4.1</version>

<configuration>
<!-- get all project dependencies -->
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
<!-- MainClass in mainfest make a executable jar -->
<!--<archive>-->
<!--<manifest>-->
<!--<addClasspath>true</addClasspath>-->
<!--     //主函数入口-->
<!--<mainClass>cn.piesat.spark.SparkStreamingKafka</mainClass>-->
<!--</manifest>-->
<!--</archive>-->
</configuration>

<executions>
<execution>
<id>make-assembly</id>
<!-- bind to the packaging phase -->
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>

二、代码
连接序列化问题通过懒加载的方式解决,此代码不会因为每次发送数据时重新建立连接。
1.创建一个KafkaSink类
---------------------------------------------------------------------------------------
package cn.piesat
import java.util
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord, RecordMetadata}

class KafkaSink[K,V](createProducer:()=>KafkaProducer[K,V]) extends Serializable {
lazy val producer=createProducer()
def send(topic:String,key:K,value:V): util.concurrent.Future[RecordMetadata]=
producer.send(new ProducerRecord[K,V](topic,key,value))
def send(topic:String,value:V): util.concurrent.Future[RecordMetadata]=
producer.send(new ProducerRecord[K,V](topic,value))
}

object KafkaSink{
import scala.collection.JavaConversions._
def apply[K,V](config:Map[String,Object]):KafkaSink[K,V]={
val createProducerFunc=()=>{
val producer=new KafkaProducer[K,V](config)
sys.addShutdownHook{
producer.close()
}
producer
}
new KafkaSink(createProducerFunc)
}
def apply[K,V](config:java.util.Properties):KafkaSink[K,V]=apply(config.toMap)
}
------------------------------------------------------------------------------


2.创建一个任务入口类
--------------------------------------------------------------------------------
package cn.piesat

import java.util.Properties

import org.apache.spark.broadcast.Broadcast
import org.apache.spark.{SparkConf, SparkContext}

object SparkToKafka {

def main(args:Array[String])={
val conf=new SparkConf().setMaster("local[4]").set("spark.serializer", "org.apache.spark.serializer.KryoSerializer").setAppName("SparkToKafka")
val sc=new SparkContext(conf)
val kafkaProducer:Broadcast[KafkaSink[String,String]]={
val kafkaProducerConfig={
val p=new Properties()
p.setProperty("bootstrap.servers","hadoop01:9092")
p.setProperty("key.serializer","org.apache.kafka.common.serialization.StringSerializer")
p.setProperty("value.serializer","org.apache.kafka.common.serialization.StringSerializer")
p
}
sc.broadcast(KafkaSink[String,String](kafkaProducerConfig))
}
val worldRDD=sc.makeRDD(Array("abc","def"))
worldRDD.foreachPartition(rdd=>{
rdd.foreach(record=>{
kafkaProducer.value.send("lj03",record)
})
})

}
}
-----------------------------------------------------------------------------------




posted @ 2019-04-03 16:07  Runner_Jack  阅读(4324)  评论(0编辑  收藏  举报