算法-使用递归求解迷宫问题

题目要求:

现有一个迷宫,四周都被围起来了,只能从一个入口进入,计算出一条通道使得从入口可以安全到达出口。在迷宫中行走的方向可以是(北,东北,东,东南,南,西南,西,西北)八个方向,迷宫图案如下:

 

[
    [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
    [0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1],
    [1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1],
    [1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1],
    [1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1],
    [1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1],
    [1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1],
    [1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1],
    [1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1],
    [1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1],
    [1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1],
    [1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1],
    [1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0],
    [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
]

  

入口位置在第二行第一列的位置,出口位置在倒数第二行最后一列的位置。中间是0的位置表示可以到达,其他位置被堵死。

 

解决思路:

假设在该迷宫中的某一点,其有八个方向可供选择,那么,遍历这八个方向,探测这周边八个方向是否是可达的,如果可达,那再以可达的点为当前点,继续遍历八个方向检测其周边的方向是否可达。设置一个标记表,只要是走过的点,都将标记位设置为1,这样是为了不走之前走过的老路。这样递归下去,直到到达我们想要出去的迷宫的出口处位置时,到达递归的最大深度,之后一层一层反向打印出之前走过的位置。。。

解决代码:

#!/usr/bin/env python
# encoding:utf-8
# __author__: huxianglin
# date: 2016-09-04
# blog: http://huxianglin.cnblogs.com/ http://xianglinhu.blog.51cto.com/

MAZE = [
    [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
    [0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1],
    [1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1],
    [1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1],
    [1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1],
    [1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1],
    [1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1],
    [1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1],
    [1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1],
    [1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1],
    [1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1],
    [1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1],
    [1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0],
    [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
]

MOVE = [[0, -1, "N"], [1, -1, "NE"], [1, 0, "E"], [1, 1, "SE"], [0, 1, "S"], [-1, 1, "SW"], [-1, 0, "W"],
        [-1, -1, "NW"]]


def seek_path(x, y):  # x,y作为横纵坐标传递进来
    if x == LINE-1 and y == ROW-2:  # 出口地址
        return True
    for i in range(8):  # 循环找八个方向看哪个方向有路
        line, row, direction = x+MOVE[i][0], y+MOVE[i][1], MOVE[i][2]  # 将当前位置的移动后的坐标以及移动方向赋值给新变量用来递归
        if MAZE[row][line] == 0 and mark[row][line] == 0:  # 移动后的坐标是通的并且之前没走过
            mark[row][line] = 1  # 将该新位置坐标标记为已走过
            if seek_path(line, row):  # 将新坐标传递到递归函数中进行下一步递归
                print("横向移动:%s,纵向移动:%s,方向:%s" % (MOVE[i][0], MOVE[i][1], direction))
                path.append(["横向移动:%s" % MOVE[i][0], "纵向移动:%s" % MOVE[i][1], "方向:%s" % direction,
                             "坐标:(%s,%s)" % (line, row)])
                return True

if __name__ == "__main__":
    LINE, ROW = len(MAZE[0]), len(MAZE)
    mark = []
    # for i in range(14):
    #     mark.append([0 for j in range(17)])
    mark = [[0 for v in range(len(MAZE[0]))] for m in range(len(MAZE))]  # 列表推导试生成mark列表
    path = []
    mark[1][0] = 1
    if seek_path(0, 1):
        print("迷宫走完了...下面是每一步的详细情况:")
    path.reverse()
    for i in path:
        print(i)

源代码

  

 

posted @ 2017-02-11 11:28  runnering  阅读(103)  评论(0)    收藏  举报