www.cnblogs.com/ruiyqinrui

开源、架构、Linux C/C++/python AI BI 运维开发自动化运维。 春风桃李花 秋雨梧桐叶。“力尽不知热 但惜夏日长”。夏不惜,秋不获。@ruiY--秦瑞

python爬虫,C编程,嵌入式开发.hadoop大数据,桉树,onenebula云计算架构.linux运维及驱动开发.

  博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理

什么是TCP和UDP
  TCP和UDP是TCP/IP协议中的两个传输层协议,它们使用IP路由功能把数据包发送到目的地,从而为应用程序及应用层协议(包 括:HTTP、SMTP、SNMP、FTP和Telnet)提供网络服务。TCP提供的是面向连接的、可靠的数据流传输,而UDP提供的是非面向连接的、 不可靠的数据流传输。面向连接的协议在任何数据传输前就建立好了点到点的连接。ATM和帧中继是面向连接的协议,但它们工作在数据链路层,而不是在传输 层。普通的音频电话也是面向连接的。
  
  可靠的传输协议可避免数据传输错误。其实现方式是:在构造数据包时在其中设置校验码,到达 目的地后再采用一定的算法重新计算校验码,通过比较二者,就可以找出被破坏了的数据。因为需要重发被破坏了的和已经丢失的数据,所以在需要重发数据时协议 必须能够使目的地给出源头的一个确认信号。有些数据包不一定按照顺序到达,所以协议必须能够探测出乱序的包,暂存起来,然后把它们按正确的次序送到应用层 中去。另外,协议还必须能够找出并丢弃重复发送的数据。一组定时器可以限制针对不同确认的等待时间,这样就可以开始重新发送或重新建立连接。
  
  数据流传输协议不支持位传输。TCP不能在一个包内以字节或位为单位构造数据,它只负责传输未经构造的8位字符串。
  
   非面向连接的传输协议在数据传输之前不建立连接,而是在每个中间节点对非面向连接的包和数据包进行路由。没有点到点的连接,非面向连接的协议,如 UDP,是不可靠的连接。当一个UDP数据包在网络中移动时,发送过程并不知道它是否到达了目的地,除非应用层已经确认了它已到达的事实。非面向连接的协 议也不能探测重复的和乱序的包。标准的专业术语用“不可靠”来描述UDP。在现代网络中,UDP并不易于导致传输失败,但是你也不能肯定地说它是可靠的。
  
  TCP工作流程
  现在让我们一起来看看TCP段的各个域,在IP包中它们紧跟在IP头部信息之后。第一个16位确 认了源端口,第二个16位确认了目的端口。端口的划分使IP主机之间可用单个的IP地址实现不同类型的并发连接。在绝大多数现代操作系统中,采用32位 IP地址和16位端口地址的组合来确认一个接口。源接口和目的接口的组合就定义了一个连接。有216或65536个可能的端口。最低的1024个端口是常 用的,它们是系统为特定的应用层协议所保留的默认设置。如:默认状态下,HTTP使用端口80,而POP3使用端口110。其它的应用可以使用编号更高的 端口。
  
  在接下来的两个域中,序列号和确认号是TCP实现可靠连接的关键。当建立一个TCP连接时,发送方主机发出一个随机的初 始化序列号给初始化器,初始化器将其加1后送回确认域的起始器,这意味着下一个字节可以发送了。一旦数据开始流动,序列号和确认号将跟踪已发送了那些数 据,那些数据已被确认。因为每个域都是32位,总共可以有232个值,所以每个域的范围是:0~4294967295,当超过上限时回到0。
  
  4位的偏移量代表TCP头部一共有多少个32位的信息。这个信息是必不可少的,因为有可选的头部区域,偏移量标识了头部的结束和数据的开始。
  
  TCP的设计者保留了接下来的6位,以防万一将来要对其进行扩展。实际上,自从RFC793(传输控制协议)1981年发布以来,还没人有恰当的理由使用这些位,在这一点上,Jon Postel和他的同事一定是过分谨慎了。
  
   随后的6位每个都是一个标志。若UNG标志位的值为1,意味着远在头部紧急指针区域的数据是有效的;若ACK标志位的值为1,则意味着确认号区域中的数 据是有效的。(注意:一个SYN包有一个有意义的序列号,但它的确认号是无意义的,因为它并不确认任何事件)PSH标志位使数据不必等待发送和等待接收。 RST标志位将断开一个连接。SYN(同步)标志位意味着序列号是有效的,FIN(结束)标志位将指出发送方已经发完了数据。
  
   16位长的窗口区域表示了“滑动窗口”的大小,也就是告诉发送方它已经准备好接收多少个字的数据。TCP通过调整窗口的大小来控制数据的流量。一个值为0 的窗口意味着通告发送方:如果没有进一步的通知,接收器已满,不能再接收更多的数据了。大的窗口可以确保在任何给定的时间传输多达65536个未经确认的 字节,但是,当重发定时器超时且又没有得到接收确认时,窗口将减半,从而有效地降低传输速率。
  
  16位的校验码区域保证了数据的完整性,保护了TCP头部和IP头部的各个区域。发送方计算校验值并把它插入这个区域,接收方根据收到的包重新计算该值并比较二者,如果它们是匹配的,则认为数据是完整无损的。
  
  当设置紧急标志位时,紧急指针是一个16位的偏移量,它代表必须加快的最后一个字。选择区域可以容纳0或多个32位字,可扩展TCP的性能。大多数常用的选择区域支持大于65536字节的窗口,从而缩短了等待确认的时间,尤其是在高传输率时。
  
   TCP的传输机构有多个定时器。当一个包发送时,重发定时器开始计数;当收到确认信号后,重发定时器停止计数。如果超过设定时间段还没有收到确认信号, 就重发该包。一个比较棘手的问题是如何设置该时间段。如果太长,当网络传输错误增加时将导致不必要的等待时间;如果太短,就会产生过多的重复包从而降低网 络的反应时间。现代TCP协议根据实际情况对重发定时器进行动态设定。
  
  持续定时器对于避免死锁是必不可少的。如果网络收到了一 个大小为0的窗口确认并且丢失了随后的重发数据的确认,持续定时器将超时并发送一个探针。探针的回应将指出窗口的大小(也许仍为0)。保持定时器在本端没 有任何活动后,将检查在连接的另一端是否还有运行的进程。如果没有任何回应,该定时器将断开连接。
  
  当断开一个连接时,断开连接定时器将包的最大生命期加倍。该定时器在连接断开之前确保流量最大。
  
   不管重发过程执行得多么有效,很少的丢失包就能严重地降低TCP连接的流量。每个未收到的包或包的片段只会在重发定时器超时的时候才会丢失。在数据重发 时,接收过程一直在递送这些重发的数据,这样就使总体的数据传输陷于停顿,直到丢失的数据被取代为止。这些重发过程导致基于TCP的连接有时处于不稳定状 态。
  
  TCP与UDP的选择
  如果比较UDP包和TCP包的结构,很明显UDP包不具备TCP包复杂的可靠性与控制 机制。与TCP协议相同,UDP的源端口数和目的端口数也都支持一台主机上的多个应用。一个16位的UDP包包含了一个字节长的头部和数据的长度,校验码 域使其可以进行整体校验。(许多应用只支持UDP,如:多媒体数据流,不产生任何额外的数据,即使知道有破坏的包也不进行重发。)
  
   很明显,当数据传输的性能必须让位于数据传输的完整性、可控制性和可靠性时,TCP协议是当然的选择。当强调传输性能而不是传输的完整性时,如:音频和 多媒体应用,UDP是最好的选择。在数据传输时间很短,以至于此前的连接过程成为整个流量主体的情况下,UDP也是一个好的选择,如:DNS交换。把SNMP建立在UDP上的部分原因是设计者认为当发生网络阻塞时,UDP较低的开销使其有更好的机会去传送管理数据。TCP丰富的功能有时会导致不可预料的性能低下,但是我们相信在不远的将来,TCP可靠的点对点连接将会用于绝大多数的网络应用。

posted on 2013-10-16 09:49  秦瑞It行程实录  阅读(1010)  评论(0编辑  收藏  举报
www.cnblogs.com/ruiyqinrui