12-1每日博客

Mapreduce实例——倒排索引

"倒排索引"是文档检索系统中最常用的数据结构,被广泛地应用于全文搜索引擎。它主要是用来存储某个单词(或词组)在一个文档或一组文档中的存储位置的映射,即提供了一种根据内容来查找文档的方式。由于不是根据文档来确定文档所包含的内容,而是进行相反的操作,因而称为倒排索引(Inverted Index)。

实现"倒排索引"主要关注的信息为:单词、文档URL及词频。

下面以本实验goods3、goods_visit3、order_items3三张表的数据为例,根据MapReduce的处理过程给出倒排索引的设计思路:

(1)Map过程

首先使用默认的TextInputFormat类对输入文件进行处理,得到文本中每行的偏移量及其内容。显然,Map过程首先必须分析输入的<key,value>对,得到倒排索引中需要的三个信息:单词、文档URL和词频,接着我们对读入的数据利用Map操作进行预处理,如下图所示:

首先使用默认的TextInputFormat类对输入文件进行处理,得到文本中每行的偏移量及其内容。显然,Map过程首先必须分析输入的<key,value>对,得到倒排索引中需要的三个信息:单词、文档URL和词频,这里存在两个问题:第一,<key,value>对只能有两个值,在不使用Hadoop自定义数据类型的情况下,需要根据情况将其中两个值合并成一个值,作为key或value值。第二,通过一个Reduce过程无法同时完成词频统计和生成文档列表,所以必须增加一个Combine过程完成词频统计。

经过map方法处理后,Combine过程将key值相同的value值累加,得到一个单词在文档中的词频。如果直接将输出作为Reduce过程的输入,在Shuffle过程时将面临一个问题:所有具有相同单词的记录(由单词、URL和词频组成)应该交由同一个Reducer处理,但当前的key值无法保证这一点,所以必须修改key值和value值。这次将单词作为key值,URL和词频组成value值。这样做的好处是可以利用MapReduce框架默认的HashPartitioner类完成Shuffle过程,将相同单词的所有记录发送给同一个Reducer进行处理。

经过上述两个过程后,Reduce过程只需将相同key值的value值组合成倒排索引文件所需的格式即可,剩下的事情就可以直接交给MapReduce框架进行处理了。

代码如下:

package exper;

import java.io.IOException;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class MyIndex {
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        Job job = Job.getInstance();
        job.setJobName("InversedIndexTest");
        job.setJarByClass(MyIndex.class);

        job.setMapperClass(doMapper.class);
        job.setCombinerClass(doCombiner.class);
        job.setReducerClass(doReducer.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);

       Path in1 = new Path("D:\\mapreduce\\8in\\goods3\\goods.txt");
       Path in2 = new Path("D:\\mapreduce\\8in\\goods_visit3\\goods_visit3.txt");
       Path in3 = new Path("D:\\mapreduce\\8in\\order_item3\\order_items3.txt");
       Path out = new Path("file:///D:/mapreduce/8out");

        FileInputFormat.addInputPath(job, in1);
        FileInputFormat.addInputPath(job, in2);
        FileInputFormat.addInputPath(job,in3);
        FileOutputFormat.setOutputPath(job,out);

        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }

    public static class doMapper extends Mapper<Object, Text, Text, Text> {
        public static Text myKey = new Text();
        public static Text myValue = new Text();
        //private    FileSplit    filePath;

       
@Override
        protected void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {
            String filePath = ((FileSplit) context.getInputSplit()).getPath().toString();
            if (filePath.contains("goods")) {
                String val[] = value.toString().split("   ");
                int splitIndex = filePath.indexOf("goods");
                myKey.set(val[0] + ":" + filePath.substring(splitIndex));
            } else if (filePath.contains("order")) {
                String val[] = value.toString().split("   ");
                int splitIndex = filePath.indexOf("order");
                myKey.set(val[2] + ":" + filePath.substring(splitIndex));
            }
            myValue.set("1");
            context.write(myKey, myValue);
        }
    }

    public static class doCombiner extends Reducer<Text, Text, Text, Text> {
        public static Text myK = new Text();
        public static Text myV = new Text();

        @Override
        protected void reduce(Text key, Iterable<Text> values, Context context)
                throws IOException, InterruptedException {
            int sum = 0;
            for (Text value : values) {
                sum += Integer.parseInt(value.toString());
            }
            int mysplit = key.toString().indexOf(":");
            myK.set(key.toString().substring(0, mysplit));
            myV.set(key.toString().substring(mysplit + 1) + ":" + sum);
            context.write(myK, myV);
        }
    }

    public static class doReducer extends Reducer<Text, Text, Text, Text> {

        public static Text myK = new Text();
        public static Text myV = new Text();

        @Override
        protected void reduce(Text key, Iterable<Text> values, Context context)
                throws IOException, InterruptedException {

            String myList = new String();

            for (Text value : values) {
                myList += value.toString() + ";";
            }
            myK.set(key);
            myV.set(myList);
            context.write(myK, myV);
        }
    }
}

posted @ 2021-12-01 22:23  软工新人  阅读(33)  评论(0编辑  收藏  举报