7-25每周总结

这周学习Hadoop的简介及其发展,首先是Hadoop的介绍

1)Hadoop是一个由Apache基金会所开发的分布式系统基础架构。
2)主要解决,海量数据的存储和海量数据的分析计算问题。
3)广义上来说,Hadoop通常是指一个更广泛的概念——Hadoop生态圈。

 Hadoop 发展历史 

1)Hadoop创始人Doug Cutting,为了实现与Google类似的全文搜索功能,他在Lucene框架基础上进行优
化升级,查询引擎和索引引擎。
Hadoop创始人Doug Cutting
2)2001年年底Lucene成为Apache基金会的一个子项目。
3)对于海量数据的场景,Lucene框架面对与Google同样的困难,存储海量数据困难,检索海量速度慢。
4)学习和模仿Google解决这些问题的办法 :微型版Nutch。
5)可以说Google是Hadoop的思想之源(Google在大数据方面的三篇论文)
GFS --->HDFS
Map-Reduce --->MR
BigTable --->HBase

6)2003-2004年,Google公开了部分GFS和MapReduce思想的细节,以此为基础Doug Cutting等人用
了2年业余时间实现了DFS和MapReduce机制,使Nutch性能飙升。
7)2005 年Hadoop 作为 Lucene的子项目 Nutch的一部分正式引入Apache基金会。
8)2006 年 3 月份,Map-Reduce和Nutch Distributed File System (NDFS)分别被纳入到 Hadoop 项目
中,Hadoop就此正式诞生,标志着大数据时代来临。
9)名字来源于Doug Cutting儿子的玩具大象

然后介绍hadoop的优势

1)高可靠性:Hadoop底层维护多个数据副本,所以即使Hadoop某个计算元
素或存储出现故障,也不会导致数据的丢失。
2)高扩展性:在集群间分配任务数据,可方便的扩展数以千计的节点。

3)高效性:在MapReduce的思想下,Hadoop是并行工作的,以加快任务处
理速度。
4)高容错性:能够自动将失败的任务重新分配。

然后介绍hadoop生态体系

1)Sqoop:Sqoop 是一款开源的工具,主要用于在 Hadoop、Hive 与传统的数据库(MySQL)
间进行数据的传递,可以将一个关系型数据库(例如 :MySQL,Oracle 等)中的数据导进
到 Hadoop 的 HDFS 中,也可以将 HDFS 的数据导进到关系型数据库中。
2)Flume:Flume 是一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,
Flume 支持在日志系统中定制各类数据发送方,用于收集数据;
3)Kafka:Kafka 是一种高吞吐量的分布式发布订阅消息系统;

4)Spark:Spark 是当前最流行的开源大数据内存计算框架。可以基于 Hadoop 上存储的大数
据进行计算。
5)Flink:Flink 是当前最流行的开源大数据内存计算框架。用于实时计算的场景较多。
6)Oozie:Oozie 是一个管理 Hadoop 作业(job)的工作流程调度管理系统。
7)Hbase:HBase 是一个分布式的、面向列的开源数据库。HBase 不同于一般的关系数据库,
它是一个适合于非结构化数据存储的数据库。
8)Hive:Hive 是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张
数据库表,并提供简单的 SQL 查询功能,可以将 SQL 语句转换为 MapReduce 任务进行运
行。其优点是学习成本低,可以通过类 SQL 语句快速实现简单的 MapReduce 统计,不必开
发专门的 MapReduce 应用,十分适合数据仓库的统计分析。
9)ZooKeeper:它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、
名字服务、分布式同步、组服务等。

posted @ 2021-07-25 20:54  软工新人  阅读(51)  评论(0编辑  收藏  举报