牛客多校第一场补题

难度升序



F:Infinite String Comparision

上手就写,将ab都延长2倍,然后比较到max(a.length,b.length)即可

证法:假设a.length<b.length,然后举例子就行了


#pragma GCC optimize(2)
#include<bits/stdc++.h>
#define ll long long
#define fastio {ios::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL);};
using namespace std;
double pi = acos(-1);
const double eps = 1e-9;
const int inf = 1e9 + 7;
const int maxn = 2e3 + 10;
 
int judge(string a,string b)
{
    int lena = a.length(), lenb = b.length();
    int len = max(lena, lenb);
    for (int i = 0; i < len; i++)
    {
        int l = i % lena, r = i % lenb;
        if (a[l] < b[r])return -1;
        else if (a[l] > b[r])return 1;
    }
    return 0;
}
 
int main()
{
    fastio;
    string a, b;
    while (cin >> a >> b)
    {
        a += a, b += b;
        if (judge(a, b) == 1)cout << ">" << endl;
        else if(judge(a, b) == 0)cout << "=" << endl;
        else cout << "<" << endl;
    }
    return 0;
}

J-Easy Integration


求这个积分,如果是分数就输出分子乘分母的逆元再模998244353

手残导致输出溢出WA了,我只能爪巴

#pragma GCC optimize(2)
#include<bits/stdc++.h>
#define ll long long
#define fastio {ios::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL);};
using namespace std;
double pi = acos(-1);
const double eps = 1e-9;
const int inf = 1e9 + 7;
const int maxn = 1e6 + 10;
const ll mod = 998244353;
ll f[maxn], fac[maxn], tmp[maxn];
 
long long qpow(long long x, long long n) {
    long long res = 1;
    while (n) {
        if (n & 1) res = (res * x) % mod;
        x = (x * x) % mod;
        n /= 2;
    }
    return res%mod;
}
 
int main()
{
    fastio;
    ll n;
    f[0] = 1;
    fac[0] = 1;
    tmp[1] = 2;
    for (ll i = 1; i < maxn; i++)
        fac[i] = (fac[i - 1] * (2 * i + 1)) % mod;
    for (ll i = 2; i < maxn; i++)
        tmp[i] = (tmp[i - 1] * 2 * i) % mod;
    while (cin >> n)
    {
        cout << (((qpow(qpow(4, n), mod - 2) % mod) * (tmp[n] % mod))%mod * (qpow(fac[n], mod - 2) % mod)) % mod << endl;
    }
}

I-1 or 2

很明显是个网络流,但需要一点建图的技巧

构造源点流量为inf,连接输入点1n,流量为x;然后将1+Nn+N与输入点按照题目要求相连,每条边的流量为1;再将1+N~n+N进行拆点限流,最后汇总到汇点跑dinic检查是否能跑到最大流即可
(代码有点不同,思路一样,板子备注没删)

#pragma GCC optimize(2)
#include<bits/stdc++.h>
#define ll long long
#define fastio {ios::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL);};
using namespace std;
double pi = acos(-1);
const double eps = 1e-9;
const int inf = 1e9 + 7;
const int maxn = 1e6 + 10;
int cnt = 1, head[maxn], now[maxn], deep[maxn];
queue<int>q;
 
struct edge {
    int to;
    int cost;
    int next;
}e[maxn * 2];
void add(int from, int to, int cost)//前向星
{
    e[++cnt].to = to;
    e[cnt].cost = cost;
    e[cnt].next = head[from];
    head[from] = cnt;
}
 
int n, m, s, t;//n个点,m条边,s为源点,t为汇点
 
bool bfs()
{
    memset(deep, 0, sizeof(deep));//初始化深度
    while (!q.empty())q.pop();//初始化队列
    q.push(s);
    deep[s] = 1;//源点深度赋值1
    now[s] = head[s];//将拥有深度的点复制到另一个head数组
    while (!q.empty())
    {
        int from = q.front(), to, cost; q.pop();
        for (int i = head[from]; i; i = e[i].next)
        {
            to = e[i].to;
            cost = e[i].cost;
            if (cost && !deep[to])//容量>0且未遍历过
            {
                q.push(to);
                deep[to] = deep[from] + 1;
                now[to] = head[to];//将拥有深度的点复制
                if (to == t)return 1;//找到汇点就return,在deep[t]-1的点早已被复制,所以不用担心直接返回会丢失增广路
            }
        }
    }
    return 0;
}
 
int dfs(int from, int flow)
{
    if (from == t)return flow;
    int rest = flow, tmp, i;//rest存当前剩余容量,tmp存当前增广路可增广流量,i前向星
    //cout << 1 << endl;
    for (i = now[from]; i && rest; i = e[i].next)//尝试增广与from相连的所有容量>0且deep[from]+1==deep[to]的点所存在的路径
        if (e[i].cost && deep[e[i].to] == deep[from] + 1)
        {
            tmp = dfs(e[i].to, min(flow, e[i].cost));//取当前路径上最小容量作为flow
            if (!tmp)deep[e[i].to] = -2;//to所有边都无法增广,那就炸点,直接把深度赋一个不可能值
            e[i].cost -= tmp;//增广完成后正向边减去tmp,反向边加上tmp,剩余容量减去tmp
            e[i ^ 1].cost += tmp;//由于存图是从2开始存并且正边和反边相邻,所以正边^1是反边,反之亦然
            rest -= tmp;
            //cout << rest << endl;
        }
    now[from] = i;//当前弧优化,下次遍历到from时会直接从i(flow完了i就不一定是0了)开始
    return flow - rest;//返回一个增广消耗的值
}
 
ll dinic()
{
    long long maxflow = 0;
    long long flow = 0;
    while (bfs())
    {
        //for (int i = 1; i <= n; i++)
        //  cout << deep[i] << " ";
        while (flow = dfs(s, inf))//dfs没能找到增广路就重新进行分层
            maxflow += flow;
    }
    return maxflow;
}
 
int main()
{
    fastio;
    int n, m;
    s = 200, t = 301;
    while (cin >> n >> m)
    {
        cnt = 1;
        memset(head, 0, sizeof(head));
        int sum = 0;
        for (int i = 1; i <= n; i++)
        {
            int x;
            cin >> x;
            sum += x;
            add(i, i + 100, 0);
            add(i + 100, i, x);//限流器
            add(i, t, inf);
            add(t, i, 0);
            add(s, i + 200, x);
            add(i + 200, s, x);
        }
        for (int i = 1; i <= m; i++)
        {
            int a, b;
            cin >> a >> b;
            add(a + 200, b + 100, 1);
            add(b + 100, a + 200, 0);
            add(b + 200, a + 100, 1);
            add(a + 100, b + 200, 0);
        }
        if (dinic() == sum)cout << "Yes" << endl;
        else cout << "No" << endl;
 
    }
    return 0;
}

H-Minimum-cost Flow

最小费用流,题目直接告诉做法了,直接跑就完事了(我板子好像常数有点问题,cin直接原地爆炸)

还是有丶做法:首先跑流量无限,所有边容量为1的最小费用流,记录每一条增广路的花费(每一条都是满流);

然后对于每一对uv,让每条边的容量都变成u,那么每一条增广路的花费也会变成u倍;

由于源点是单位流,边权原本是\(u/v\),现在变成了\(u\),那么源点的流量就变成了\(v\),因此最大流(或者说答案需求流)必然只能是v

设当前已增广的流量为flownow

flownow=0

这样遍历每一条增广路(已知必然满流),若\(flownow+u<=v\),则\(flownow += u, cost += tracost[i] * u\);

如果\(flownow+u>v\),但\(flownow<v\),这一条就跑不满,\(cost += tracost[i] * (v - tmp), flownow = v\);

如果跑完之后\(flownow<v\),则跑不满单位流,输出\(NaN\);

如果跑满了,就把\(cost\)\(v\)求个\(gcd\),然后输出就完事了

#pragma GCC optimize(2)
#include<bits/stdc++.h>
#define ll long long
using namespace std;
double pi = acos(-1);
const double eps = 1e-9;
const int inf = 1e9 + 7;
const int maxn = 60;
 
int cnt = 1, head[maxn], pre[maxn], last[maxn];
int dis[maxn], flow[maxn], maxflow;
int vis[maxn];
vector<ll>tracost;
queue<int>q;
int n, m, S, T;
 
struct edge {
    int to;
    int cost;
    int vue;
    int next;
}e[maxn * 4];
 
inline void add(int from, int to, int cost, int vue)//前向星
{
    e[++cnt].to = to;
    e[cnt].cost = cost;
    e[cnt].vue = vue;
    e[cnt].next = head[from];
    head[from] = cnt;
}
 
ll __gcd(ll a, ll b)
{
    while (b)
    {
        ll tmp = b;
        b = a % b;
        a = tmp;
    }
    return a;
}
 
 
ll SPFA(int s, int t) {
    memset(dis, 0x3f, sizeof(dis));
    memset(vis, 0, sizeof(vis));
    q.push(s);
    dis[s] = 0, vis[s] = 1, pre[t] = -1, flow[s] = inf;
    while (!q.empty()) {
        int now = q.front();
        q.pop();
        vis[now] = 0;
        for (int i = head[now]; i != -1; i = e[i].next) {
            if (e[i].cost > 0) {
                int po = e[i].to;
                long long lo = e[i].vue;
                if (dis[po] > dis[now] + lo) {
                    dis[po] = dis[now] + lo;
                    flow[po] = min(flow[now], e[i].cost);
                    last[po] = i;
                    pre[po] = now;
                    if (!vis[po]) {
                        vis[po] = 1;
                        q.push(po);
                    }
                }
            }
        }
    }
    return pre[t] != -1;
}
void MCMF(int s, int t) {
    maxflow = 0;
    while (SPFA(s, t)) {
        maxflow += flow[t];
        tracost.push_back(dis[t] * flow[t]);
        for (int i = t; i != s; i = pre[i]) {
            e[last[i]].cost -= flow[t],
            e[last[i] ^ 1].cost += flow[t];
        }
    }
}
 
int main()
{
    S = 1;
    while (~scanf("%d %d", &n, &m))
    {
        memset(head, -1, sizeof(head));
        tracost.clear();
        cnt = 1;
        T = n;
        for (int i = 1; i <= m; ++i)
        {
            ll a, b, c;
            scanf("%d%d%d", &a, &b, &c);
            add(a, b, 1, c);
            add(b, a, 0, -c);
        }
        MCMF(S, T);
        int q;
        scanf("%d", &q);
        int u, v;
        while (q--)
        {
            scanf("%d%d", &u, &v);
            ll tmp = 0, cost = 0;
                int size = tracost.size();
                for (int i = 0; i < size; i++)
                {
                    if (tmp + u <= v)
                        tmp += u, cost += tracost[i] * u;
                    else if (tmp < v)
                        cost += tracost[i] * (v - tmp), tmp = v;
                    else
                        break;
                }
                if (tmp == v)
                {
                    ll gcd = __gcd(cost, v);
                    printf("%lld/%lld\n", cost / gcd, v / gcd);
                }
                else printf("NaN\n");
        }
    }
    return 0;
 
}
posted @ 2020-07-18 20:29  Lecoww  阅读(104)  评论(0编辑  收藏  举报