数据可视化分析 - 数据科学 Part 4

数据科学第四章


1.Python绘图基础

  • Part 1
import matplotlib.pyplot as plt
from pandas import DataFrame, Series

(1)快速绘图

  • Part 2
gdp = [41.3, 48.9, 54.0, 59.5, 64.4, 68.9, 74.4]
data = DataFrame({'GDP: Trillion': gdp}, index=['2010', '2011', '2012', '2013', '2014', '2015', '2016'])
data.plot()
plt.show()           # 显示图形

  • Part 3
data.plot(title='2010-2016 GDP', LineWidth=2, marker='o', linestyle='dashed', color='r',\
          grid=True, alpha=0.8, use_index=True, yticks=[35, 40, 45, 50, 55, 60, 65 ,70, 75])
plt.show()

参数名 说明
x x轴数据, 默认值为None
y y轴数据, 默认值为None
kind 绘图类型。'line':折线图, 默认值;'bar':垂直柱状图;'barth':水平柱状图;'hist':直方图;'box':箱式图;'kde'/'density':Kernel核密度估计图;'pie':饼图;'scatter':散点图
title 图形标题,字符串
color 画笔颜色。用颜色缩写,如'r', 'b',或者RGB值,如'#CECECE'。主要颜色缩写:'b':blue;'c':cyan;'g':green;'k':black
grid 图形是否有网格,默认为None
fontsize 坐标轴(包括x轴和y轴)刻度的字体大小。整数,默认为None
alpha 透明度0~1
use_index 默认为True,用索引作为x轴刻度
linewidth 绘图线宽
linestyle 绘图线形
marker 标记风格,即点型
xlim、ylim x轴,y轴的范围,二元组表示最小值和最大值
ax axes对象

(2)精细画图

  • Part 4
plt.figure()       # 创建绘图对象
GDPdata = [41.3, 48.9, 54.0, 59.5, 64.4, 68.9, 74.4]
plt.plot(GDPdata, color='r', linewidth=2, linestyle='dashed', marker='o', label='GDP')    # 绘图

# 精细设置图元
plt.title('2010~2016 GDP: Trillion')
plt.xlim(0, 6)     # x轴绘图范围
plt.ylim(35, 75)   # y轴绘图范围
plt.xticks(range(0, 7), ('2010', '2011', '2012', '2013', '2014', '2015', '2016'))    # 将x轴刻度映射为字符串
plt.legend(loc='upper left')      # 图例说明位置
plt.grid()         # 显示网格线
plt.show()         # 显示并关闭绘图

(3)多子图

  • figure.add_subplot(numRows, numCols, plotNum)
  • numRows: 绘图区域划分行数
  • numCols: 绘图区域划分列数
  • plotNum: 绘图区域所在区域
  • Part 5
data = Series(GDPdata, index=['2010', '2011', '2012', '2013', '2014', '2015', '2016'])
fig = plt.figure(figsize=(6, 6))      # 定义图形大小

ax1 = fig.add_subplot(2, 1, 1)        # 创建子图1
ax1.plot(data)                        # 用AxesSubplot绘制折线图

ax2 = fig.add_subplot(2, 2, 3)        # 创建子图2
data.plot(kind='bar', use_index=True, fontsize='small', ax=ax2)

ax3 = fig.add_subplot(2, 2, 4)        # 创建子图3
data.plot(kind='box', xticks=[], fontsize='small', ax=ax3)
<matplotlib.axes._subplots.AxesSubplot at 0x27876b1d4c8>

(4)设置图元属性和说明,保存操作

  • Part 6
data.plot(title='2010-2016 GDP', LineWidth=2, marker='o', linestyle='dashed', color='r', grid=True, alpha=0.9)

# 超出范围后不显示
plt.annotate('turning point', xy=(1, 48.5), xytext=(1.5, 43), arrowprops=dict(arrowstyle='->'))

plt.text(1.8, 70, 'GDP keeps booming!', fontsize='larger')

plt.xlabel('Year', fontsize=12)
plt.ylabel('GDP Increment Speed(%)', fontsize=12)

# 保存
plt.savefig('3th data\GDP.png', dpi=400, bbox_inches='tight')

2.其他数据可视化表示方法

(1)函数绘图

  • Part 7
import numpy as np
import matplotlib.pyplot as plt
from pandas import DataFrame, Series
import pandas as pd

# 设置中文
import matplotlib
plt.rcParams['font.sans-serif'] = ['SimHei']
matplotlib.rcParams['axes.unicode_minus']=False
引入数据
  • Part 8
GINI_COV = pd.read_csv('3th data\GINI_COV.csv').iloc[:, 1:]
GINI_COV
中国 泰国 印度尼西亚 越南 柬埔寨 奥地利 比利时 瑞士 捷克 德国 ... 厄瓜多尔 墨西哥 巴拿马 秘鲁 玻利维亚 危地马拉 洪都拉斯 巴拉圭 萨尔瓦多 南非
0 1.472413 0.574690 -1.138000 0.961833 0.990535 0.136190 0.030381 0.068476 0.042095 -0.323381 ... 0.851048 -0.308119 0.322762 0.832905 0.049214 1.650081 0.367333 0.460762 0.765381 -0.248414
1 0.574690 3.887452 -6.833905 0.524238 3.745933 -1.119286 0.528905 1.387714 0.990286 -0.412095 ... 6.916690 3.435619 3.936405 5.758643 9.400071 2.907842 3.463024 3.382095 6.296405 -1.531205
2 -1.138000 -6.833905 14.122667 -1.356048 -6.489586 1.886429 -0.741238 -2.683857 -1.907286 1.303905 ... -13.407095 -6.943881 -7.688381 -10.532714 -18.070571 -6.005233 -4.305619 -7.516762 -12.982667 4.659531
3 0.961833 0.524238 -1.356048 1.286024 0.095826 -0.047500 0.106048 -0.028000 0.267429 -0.462810 ... 0.910262 0.341690 0.487833 0.707929 0.389357 1.017324 0.105167 0.893524 0.997833 -0.490467
4 0.990535 3.745933 -6.489586 0.095826 9.228565 -0.930857 1.087014 2.284157 0.442090 0.426067 ... 8.361343 2.486307 3.289538 7.452195 11.003314 4.353009 4.024590 4.168433 5.390538 0.507772
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
62 1.650081 2.907842 -6.005233 1.017324 4.353009 -0.665786 -0.105945 1.220221 0.702843 -0.544824 ... 6.064755 2.332612 3.492340 6.009764 7.909443 5.156259 2.263938 4.513252 6.001876 -1.842574
63 0.367333 3.463024 -4.305619 0.105167 4.024590 -1.337857 0.729190 1.060857 0.825429 0.308048 ... 5.653190 2.753190 3.137762 5.501714 7.913857 2.263938 6.586381 2.893381 4.284190 0.413193
64 0.460762 3.382095 -7.516762 0.893524 4.168433 -1.205714 0.243190 1.571286 1.186000 -0.922810 ... 7.842762 4.199548 4.723905 7.370429 11.137214 4.513252 2.893381 7.250667 7.554619 -2.830776
65 0.765381 6.296405 -12.982667 0.997833 5.390538 -1.812143 0.501952 2.529571 1.915143 -1.159619 ... 12.506381 6.511738 7.451952 10.684857 17.325214 6.001876 4.284190 7.554619 13.171238 -4.599483
66 -0.248414 -1.531205 4.659531 -0.490467 0.507772 0.369179 0.430743 -0.412436 -0.717974 1.246205 ... -3.732493 -2.743832 -2.793590 -2.007002 -4.964467 -1.842574 0.413193 -2.830776 -4.599483 3.824582

67 rows × 67 columns

* Part 9
x = np.linspace(0, 6.28, 50)        # 在0~6.28设置50个采样点
y = np.sin(x)                       # 计算y=sin(x)数组
plt.plot(x, y, color='r')           # 绘制y=sin(x)
plt.plot(x, np.exp(-x), c='b')      # 绘制y=exp(-x)
[<matplotlib.lines.Line2D at 0x278769f6f48>]

(2)绘制散点图

  • Part 10
data1 = GINI_COV['中国']
data2 = GINI_COV['俄罗斯']
data3 = GINI_COV['泰国']

# 绘制散点图
plt.figure()
plt.scatter(data1, data2, c='r', marker='s', label='China-Russia')
plt.scatter(data1, data3, c='b', marker='^', label='China-Thailand')
plt.title('GINI_COV')
plt.xlabel('China')
plt.ylabel('Other countries')
plt.grid()
plt.legend(loc='upper right')
<matplotlib.legend.Legend at 0x27876a50588>

(3)绘制散点图矩阵

  • Part 11
# 绘制散点图矩阵
grr = pd.plotting.scatter_matrix(GINI_COV.iloc[:, :8], diagonal='kde', color='k', figsize=(15,15))

(4)柱状图

  • Part 12
# 绘制复式柱状图
GINI_COV.plot(kind='bar', title='复式柱状图', figsize=(60,40), fontsize=50)
<matplotlib.axes._subplots.AxesSubplot at 0x2783b768508>

  • Part 13
# 绘制堆叠柱状图
GINI_COV.plot(kind='bar', stacked=True, title='堆叠柱状图', figsize=(60,40), fontsize=50)
<matplotlib.axes._subplots.AxesSubplot at 0x2783fa77848>

  • Part 14
# 绘制均值与标准差图
mean = np.mean(GINI_COV)         # 计算均值
std = np.std(GINI_COV)           # 计算标准差
fig = plt.figure(figsize = (60, 25))
plt.subplots_adjust(wspace=0.2)  # 设置纵向间隔

# 绘制均值的垂直和水平柱状图,标准差使用误差线表示
ax1 = fig.add_subplot(1, 2, 1)
mean.plot(kind='bar', yerr=std, color='cadetblue', title='MEAN', rot=45, ax=ax1)

ax2 = fig.add_subplot(1, 2, 2)
mean.plot(kind='barh', xerr=std, color='cadetblue', title='MEAN', rot=45, ax=ax2)
<matplotlib.axes._subplots.AxesSubplot at 0x21ddd87c488>

(5)折线图

  • Part 15
GINI = pd.read_csv('3th data\GINI.csv')
GINI = GINI.iloc[:, 1:].T.interpolate(method='linear').fillna(method='bfill')
GINI
0 1 2 3 4 5 6 7 8 9 ... 148 149 150 151 152 153 154 155 156 157
2000 33.500 32.1 31.70 42.100000 38.100000 46.1 42.80 37.700 39.1 63.2600 ... 44.400000 48.50 40.200 46.3 39.8000 42.20 37.300000 45.200000 42.2000 43.2
2001 33.500 32.1 31.70 42.100000 38.100000 46.1 42.35 37.700 39.1 59.0880 ... 44.400000 49.20 40.200 46.3 39.8000 42.20 37.728571 45.200000 42.2000 43.2
2002 33.500 32.1 31.70 42.100000 38.100000 46.1 41.90 37.675 39.1 54.9160 ... 44.400000 49.90 40.200 46.3 39.8000 42.20 38.157143 45.200000 42.2000 43.2
2003 33.500 32.1 31.70 41.733333 38.483333 46.1 42.20 37.650 39.1 50.7440 ... 44.400000 50.60 40.200 46.3 39.8000 42.20 38.585714 44.433333 42.2000 43.2
2004 33.100 32.1 31.70 41.366667 38.866667 46.1 42.50 37.625 39.1 46.5720 ... 44.400000 51.30 39.425 46.3 40.2375 42.20 39.014286 43.666667 42.2000 43.2
2005 33.675 32.1 31.70 41.000000 39.250000 46.1 42.15 37.600 39.1 42.4000 ... 44.400000 52.00 38.650 46.3 40.6750 42.20 39.442857 42.900000 42.1875 43.2
2006 34.250 32.1 31.70 41.633333 39.633333 46.1 41.80 37.575 39.1 42.1125 ... 40.850000 51.04 37.875 46.3 41.1125 42.20 39.871429 43.225000 42.1750 43.2
2007 34.825 32.1 32.00 42.266667 40.016667 46.1 39.80 37.550 39.1 41.8250 ... 37.300000 50.08 37.100 46.3 41.5500 42.96 40.300000 43.550000 42.1625 43.2
2008 35.400 32.1 32.30 42.900000 40.400000 45.5 40.30 37.525 39.1 41.5375 ... 35.850000 49.12 36.325 46.3 41.9875 43.72 39.675000 43.875000 42.1500 43.2
2009 35.050 32.1 32.15 43.300000 39.660000 46.3 39.60 37.500 39.1 41.2500 ... 34.400000 48.16 35.550 46.3 42.4250 44.48 39.050000 44.200000 42.1375 43.2
2010 34.700 32.1 32.00 43.700000 38.920000 45.1 39.40 37.500 39.1 40.9625 ... 32.950000 47.20 34.775 46.3 42.8625 45.24 38.425000 43.133333 42.1250 43.2
2011 34.975 32.1 31.80 42.400000 38.180000 43.9 37.50 37.500 39.1 40.6750 ... 31.500000 46.50 34.000 46.3 43.3000 46.00 37.800000 42.066667 42.1125 43.2
2012 35.250 32.1 31.60 42.200000 37.440000 42.6 39.30 37.500 39.1 40.3875 ... 32.433333 45.80 34.000 46.3 43.3000 46.00 37.800000 41.000000 42.1000 43.2
2013 35.525 32.1 31.60 39.700000 36.700000 41.3 37.80 37.500 39.1 40.1000 ... 33.366667 45.10 34.000 46.3 43.3000 46.00 37.800000 41.000000 42.1000 43.2
2014 35.800 32.1 31.60 39.100000 36.700000 41.3 37.00 37.500 39.1 40.1000 ... 34.300000 45.10 34.000 46.3 43.3000 46.00 37.800000 41.000000 42.1000 43.2

15 rows × 158 columns

* Part 16
GINI.plot(title='GINI', LineWidth=2, marker='o', linestyle='dashed', grid=True, use_index=True, figsize=(40, 40))
<matplotlib.axes._subplots.AxesSubplot at 0x21deb294848>

  • Part 17
# 半对数折线图
GINI.plot(logy=True, title='GINI', LineWidth=2, marker='o', linestyle='dashed', grid=True, use_index=True, figsize=(40, 40))
<matplotlib.axes._subplots.AxesSubplot at 0x21deb7631c8>

(6)直方图和密度图

  • Part 18
GINI_COV['中国'] .plot(kind='hist', density=True, bins=8, title='China')
GINI_COV['中国'] .plot(kind='kde', title='China', xlim=[-1.7, 2.2], style='k--')
<matplotlib.axes._subplots.AxesSubplot at 0x2461be0ed48>

(7)饼图

  • Part 19
data = DataFrame([[230.1, 37.8, 69.2]], columns=['TV', 'Weibo', 'WeChat']).sum()
data
TV        230.1
Weibo      37.8
WeChat     69.2
dtype: float64
  • Part 20
data.plot(kind='pie', figsize=(6, 6), title='Expenditure', fontsize=14, explode=[0, 0.2, 0], shadow=True, startangle=60, autopct='%1.1f%%')
<matplotlib.axes._subplots.AxesSubplot at 0x2462246ef08>

(8)箱型图

  • Part 21
GINI_COV.plot(kind='box', figsize=(20, 10), title='Country', grid=True)
<matplotlib.axes._subplots.AxesSubplot at 0x24621b183c8>

posted @ 2020-01-15 12:12  若水茗心  阅读(399)  评论(0编辑  收藏  举报